
 

CHAPTER 2 

THEORY AND LITERATURE REVIEWS 

Thermoelectrics 

 Thermoelectric phenomena has been described through various theories 

including the Seebeck effect, Peltier effect, and Thomson effect. These effects are all 

linked by way of the Kelvin relationship. Moreover, the Figure of Merit and 

Dimensionless Figure of Merit relating to thermoelectric materials, further describe the 

properties of these materials. (Rowe, 2006, p. 1-1) 

 Seebeck Effect 

 

Figure 1 Schematic basic thermocouple 

  The thermometric phenomena which underlies thermoelectric energy 

conversion can be conveniently discussed, with reference to the schematic of a 

thermocouple, as shown in Figure 1. It can be considered as a circuit formed from two 

dissimilar conductors, a and b (referred to in thermoelectric terms as thermocouple 

legs, arms, thermoelements, or simply elements and sometimes as pellets by device 

manufacturers), which are connected electrically in series but thermally in parallel. If 

the junctions at A and B are maintained at different temperatures 1T  and 2T  and 

1 2T T  an open circuit electromotive force (emf), V  is developed between C and D 
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and given by  1 2V S T T   or /S V T  , which defines the differential Seebeck 

coefficient abS  between the elements a and b. For small temperature differences the 

relationship is linear. The sign of a is positive if the emf causes a current to flow in a 

clockwise direction around the circuit and is measured in V K1 or more often in μ V K1. 

 Peltier Effect 

  In Figure 1, the reverse situation is considered with an external emf 

source applied across C and D and a current I  flows in a clockwise sense around the 

circuit. Then a rate of heating q  occurs at one junction between a and b and a rate of 

cooling q  occurs at the other. The ratio of I  to q  defines the Peltier coefficient 

given by / qI  . This is positive if A is heated and B is cooled and is measured in 

watts per ampere or in volts. 

 Thomson Effect 

  The last of the thermoelectric effects, the Thomson effect relates to the 

rate of generation of reversible heat q , which results from the passage of a current 

along a portion of a single conductor, along which there is a temperature difference 

T . Providing the temperature difference is small, q βI T   where β  is the 

Thomson coefficient. The units of β  are the same as those of the Seebeck coefficient 

V K1. Although the Thomson effect is not of primary importance in thermoelectric 

devices it should not be neglected in detailed calculations. 

 The Kelvin Relationships  

  The above three thermoelectric coefficients are related by the following 

Kelvin relationships:  

ab
abS

T


       (1) 

ab a bd β β

d

S

T T


       (2) 
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  These relationships can be derived using irreversible thermodynamics. 

Their validity has been demonstrated for many thermoelectric materials and it is 

assumed that they hold for all materials used in thermoelectric applications. 

 Figure of Merit 

 

Figure 2 Thermoelectric generator (left); Thermoelectric refrigerator (right) 

  A thermoelectric converter is a heat engine and like all heat engines it 

obeys the laws of thermodynamics. If we first consider the converter operating as an 

ideal generator in which there are no heat losses, the efficiency is defined as the ratio 

of the electrical power delivered to the load, to the heat absorbed at the hot junction. 

Expressions for the important parameters in thermoelectric generation can readily be 

derived by considering the simplest generator, consisting of a single thermocouple with 

thermo-elements fabricated from n- and p-type semiconductors, as shown in Figure 

2 (left). The efficiency of the generator is given by; 

 
energysupplied to the load

heat energy absorbed at hot junction
   (3) 

  If it is assumed that the electrical conductivities, thermal conductivities, 

and Seebeck coefficients of a and b are constant within an arm, and that the contact 

resistances at the hot and cold junctions are negligible compared with the sum of the 

arm resistance, then the efficiency can be expressed as; 
2 2

2ab H
H C

1
( )

2

I R I R

S IT
T T I R





 

  

           (4) 
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  where    is the thermal conductance of a and b in parallel and R is the 

series resistance of a and b. In thermoelectric materials  ,   , and S  change with 

temperature, and in both, generation and refrigeration should be taken into account. 

However, the simple expression obtained for the efficiency can still be employed with 

an acceptable degree of accuracy, if approximate averages of values are adopted for 

these parameters over the temperature range of interest. Appropriate allowances can 

also be made for contact resistance. Efficiency is clearly a function of the ratio of the 

load resistance to the sum of the generator arm resistances, and at maximum power 

output it can be shown that; 

H C

CH

C

3 4

2 2

P

T T

TT

Z






 

    (5) 

  while the maximum efficiency 

max C         (6) 

  where 

H C
C

H

T T

T



      (7) 

C

C
C

H

1 Z T 1

1 Z T
T

T


 



 

    (8) 

H CT
2

T T
      (9) 

   CZ  (the Figure of Merit of the couple) 
2

abS

R



   (10) 

  The maximum efficiency is thus the product of the Carnot efficiency, 

which is clearly less than unity, and  , which embodies the parameters of the 

materials. If the geometries of a and b are matched to minimize heat absorption, then; 
2

ab
C

a a b b

Z
/ / )

S

   



   (11) 
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  In practice, the two arms of the junction have similar material constants, 

in which case the concept of a Figure of Merit for a material is employed and given 

by; 

2

Z
S 


       (12) 

  where 2S   is referred to as the electrical power factor. 

 
Figure 3 Generating efficiency as a function of temperature and thermocouple material 

Figure-of-merit 

  The above relationships have been derived assuming that the 

thermoelectric parameters which occur in the Figure of merit are independent to 

temperature. Although generally this is not the case, assuming an average value 

provides results which are within 10% of the true value. The conversion efficiency as a 

function of operating temperature difference across a range for values of the material’s 

Figure of merit is displayed in Figure 3. Evidently an increase in temperature 

difference provides a corresponding increase in available heat for conversion as 

dictated by the Carnot efficiency. Consequently, large temperature differences are 

more desirable. As a ballpark figure, a thermocouple fabricated from a thermo-

element with an average Figure of Merit of 3103 K1 would have an efficiency of 

20%, when operated over a temperature difference of 500 K. 
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 Thermoelectric Materials 

 
Figure 4 Schematic dependence of electrical conductivity, Seebeck coefficient,  

            power factor, and thermal conductivity on concentration of free carriers 

  One of the parameters used in the classification of materials is electrical 

conductivity. Metals have high electrical conductivity, while insulators have very low 

conductivity which under normal conditions is taken as zero. Semiconductors occupy an 

intermediate position between the two. Electrical conductivity is a reflection of the 

charge carrier concentration. All three parameters which occur in the Figure of Merit 

are functions of carrier concentration. Electrical conductivity increases with an increase 

in carrier concentration as shown in Figure 4, while the Seebeck coefficient decreases 

and the electrical power factor maximizes at a carrier concentration of around 1025 

cm1. The electronic contribution to the thermal conductivity e , which in 

thermoelectric materials is generally around 1/3 of the total thermal conductivity, also 

increases with carrier concentration. Evidently the Figure of Merit optimizes at carrier 

concentrations which corresponds to semiconductor materials. Consequently, 

semiconductors are the materials most researched for thermoelectric applications. 
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  Thermoelectric phenomena are exhibited in almost all conducting 

materials (except for superconductors below CT ). Because the Figure of Merit varies 

with temperature, a more meaningful measure of performance is the Dimensionless 

Figure of Merit ZT , where T  is absolute temperature. However, only those materials 

which possess a ZT 0.5  are usually regarded as thermoelectric materials. 

DV-X 

 Adiabatic approximation  

  The molecules and ions of interest here contain a vast number of nuclei 

and electrons. The wave function for a molecule is dependent both on the nuclear and 

electronic coordinates. The first and fundamental approximation to be introduced is the 

separation of electronic and nuclear motions. This is performed using the so-called 

“adiabatic approximation” of the molecular wave function. The adiabatic separation 

leads to two different sets of equations; one governing the electronic wave function an 

determined by the electronic Schrödinger equation, and the other equation is the 

associated nuclear wave function given as the solution to a wave equation, in which 

the electronic energy acts as the potential energy (Born & Huang, 1954; Bixon & 

Jortner, 1968, p. 715-26; Born & Oppenheimer, 1927, pp.457-484) 

 Molecular orbital method 

  The concept of the molecular orbital (MO) method is strongly tied with 

the idea of the “self-consistent-field” (SCF). The SCF method is one of the most 

convenient calculations for describing the molecular orbital. In a molecular system 

consisting of N  electrons and many nuclei, the latter being assumed to be at rest, 

each electron will really move in the electronic field produced by all N 1  other 

electrons and by all the nuclei. If N  is rigorous and a very small number, this forms 

an impossibly difficult problem for a rigorous solution in quantum mechanics, as it 

would be also impossibly difficult in classical Newtonian mechanics. 
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  Researchers who have studied the electric structure of molecules 

encountered this difficulty many years ago. They overcame the problem by using a 

very obvious device. They assumed that the effect of all N 1  other electrons could 

be approximated by averaging the density of them and thereafter using this 

continuous averaged density. They studied the motion of the one remaining electron in 

the field of these N 1  averaged charges. Then they demanded that the paths of the 

electrons, so computed, should lead to the same charge density that was assumed in 

the first place as that of the space charge. The electric field so set up, produced by 

the electrons in their averaged motions and by any nuclei present, is called a “self-

consistent field”. The name was introduced by Hartree (1928, pp.89-110). He studied 

the electrons in an atom as they moved around its nucleus. Independently and at the 

same time, this same concept of the theory of a self-consistent field was applied to all 

of these problems. The individual electrons then move in a fixed external field, and at 

the same time, the same concept was applied to the molecular problem by Hund, 

Mulliken, Lennard-Jones, and many others. This then formed the basis of theories of 

electrons in crystals, which can apply the theory of the self-consistent field to all of 

these problems. The individual electrons then move in a fixed external field and their 

wave functions, derived from the solution of the Schrödinger equation, are called 

orbitals. 

  The effect of this approximation is to reduce the many-body problem 

from a 3N - dimensional one, in three coordinates of all N  electrons, to N  separate 

three-dimension problems. This is an enormous simplification. The Schrödinger 

equation for one of the molecular orbitals is still a difficult one. For an atom, that is 

Hartree’s problem which is quite simple on account of the spherical symmetry. But in 

the molecule or crystal we no longer have this symmetry, except in the neighborhood 

of one of the nuclei. Therefore I must gain adequate ways to handle the nonspherical 

problem of the Schrödinger equation in the molecule. 
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 Hartree approximation 

  In the 1920s, Bohr’s first study of the periodic system of the elements 

has shown that a “self-consistent field” method is the best approach to solving the 

many-body problem in the Schrödinger equation. Hartree’s first use of the method 

was based on his intuitiveness.  

  Consider the many-electron system with atoms or ions of N  electrons, 

surrounding a nucleus at rest, with atomic number Z . Each electron, of course, is 

acted on electrostatically by the nuclei and all N 1  of the other electrons. In the 

Hartree’s method, the very complicated field exerted by the other electron and nuclei 

could be replaced by a single potential arising from the averaged charge density of the 

other electrons and nuclei. 

  The total wave function   for a many-electron system is then defined 

as the following product; 

1 1 2 2 N N(r ) (r ) (r )         (13) 

  where (r )i i  is the thi  one-electron wave function. This product, a so 

called “Hartree’s product”, would indicate that the electrons move independently of 

each other, which is at the foundation of Hartree’s idea. The electronic charge density 

i  of thi  orbital is represented by the following equation; 

*(r) (r) (r)i i l lf        (14) 

  where if  is occupation number of electron to the thi th orbital. 

  The effective potential in which the thi  electron at position r  moves is; 

(r) (r) (r) (r)i N C XiV V V V      (15) 

  where 

2 2
1 1 2 1 2

1 12 12

(r ) (r )
(r ) ,   (r ) dr ,   (r ) dr

jv i
N C Xi

v jv

Z
V V V

r r r

 
         (16) 
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  Here the indices i  refer to the electrons, the indices v  refer to the 

nuclei, 12r  is the distance between the electron at position 1r  and the nucleus v , 12r  

is the distance between electrons at position 1r  and 2r , and the i  is the electronic 

charge density of thi  orbital as is shown in equation (2.2.2). Then NV  is nuclear 

potential, CV  the electronic repulsive potential arising from all electrons, XiV  the 

correction term because the electron in one orbital does not act no itself. 

  Let’s apply the variation method of quantum mechanics to the one-

electron Schrödinger equation in order to minimize the total energy of the many-

electron system. The result will give us the “Hartree’s equation” as; 

2 * *

1 2 1 2 2 2 2 2 1 1

1 12 12

1 1 1
(r ) (r ) dr (r ) (r ) dr (r ) (r )

2 r r

v
l k k k k k

v l
v

Z

r
      

 
         
 

   (17) 

  where 21

2
   is the kinetic-energy operator. The SCF method using 

equation (17) is called the Hartree method. 

 Hartree-Fock approximation 

  In the Hartree approximation, the total wave function   for a many-

electron system is defined as the Hartree’s product, equation (17). It is well known that 

the antisymmetry of the wave function when the coordinates and spin of two electrons 

are interchanged, is an expression of Pauli’s exclusion principle. The Hartree’s product, 

however, does not have such antisymmetry. To secure the required antisymmetry, it is 

then necessary to write the many-electron total wave function,   , not in the form of 

Hartree’s product but in the form of the Slater’s determinant (Slater, 1974; Slater, 

1929, pp.1293-1323); 

1 1 1

2 2 2

(1) (2) ( )

(1) (2) ( )1

N!

(1) (2) (1)N N N

u u u N

u u u N

u u u

    (18) 
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  Enlarge the meaning of the orbitals to include dependence on spins, so 

that for each electron we can have both an up-spin and down-spin orbital, hence 

called a “spin orbital”. The function   will be equal to zero when two rows or 

columns of matrix are the same. This means that two electrons cannot occupy the 

same spin orbital and position.  

  When applying the variation method so as to minimize the total energy, 

the resulting one-electron Schrödinger equation is; 

2 *

1 2 1 2 2 1 1 1

1 12

1 1
(r ) (r ) dr (r ) (r ) (r )

2 r

v
l Xk k k k

v l
v

Z
V

r
    

 
        
 

  (19) 

  where 1(r )XkV  is the “exchange-correlation potential” as; 

 

* *

1 1 2 1 2 2

12
1 *

1 1

1
(r ) (r ) (r ) (r )dr

r
(r )

(r ) (r )

k l k
l

Xk

k k

V

   

 

 

     (20) 

  This term is the potential of a charge whose magnitude is one electron 

charge removed from a hole surrounding the location of 1r . This charge, which we 

shall call the “exchange-correlation charge”, has the same spin as that of the thk  

spin orbital and has a charge density at the position of the first electron which is just 

great enough to neutralize the total electronic charge of spin of thi  spin orbital at that 

point. This hole is often called the “Fermi hole”. 

  The SCF method using equation (18) is called the Hartree-Fock method. 

This method proves to be the better approximation for molecules and ions than that 

obtained by the original Hartree method. The last term of equation (19) is, however, 

obviously much more complicated that the corresponding one in the Hartree method. 

It’s existence in the Hartree-Fock makes any straightforward calculation of molecular 

orbitals using the Hartree-Fock method quite out of the question, except for the very 

simplest molecules. 
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 Hartree-Fock-Slater approximation 

  The Hartree-Fock equation (19) can be applied to atoms without great 

difficulty, but for crystals it has proven to be unmanageable in most cases. The only 

term that creates difficulty is the exchange-correlation term. When we multiply the 

exchange term of equation (19) by the complex conjugate of one orbital, we are 

dealing with a product of orbitals. Each term leads to what is called a “four-center 

integral”. That is extremely demanding in the amount of computer time and capacity 

required. Hence, we have to set up a simplified form for the exchange term. 

  Now fix your attention on an electron with up-spin at a given 

composition in space. In 1933, Winger and Seitz suggested that this electron of  

up-spin would repel an electron of down-spin electrostatically, and that this would 

tend to keep them apart (Wigner & Seitz, 1929, p. 509). Subsequently, the density of 

other electrons of the same spin fall into zero at the position of the fixed electron, and 

the integrated deficiency, known as the Fermi hole. 

  The Hartree-Fock approximation does not take account of this correlation 

effect. Instead, it only takes account of the exchange-correlation effect that leads to 

the extreme demand of computing time. In 1951, Slater proposed replacing the 

exchange-correlation term in equation (20) by the correlation term with the hope that 

it might make calculation more practical. Then Slater (Slater, 1951, pp.385-390), and 

later in 1965 W. Kohn and L. J. Sham (Kohn & Sham, 1965, p. A1133), pointed out 

that the correlation term XV  , based on the local spin density approximation (LSDA), 

would be approximately represented as the following equation; 

1

3
3

3 (r )
4X

V


 


 
   

 
    (21) 

  This approximate potential with a parameter alpha is usually called the 

X  potential. In the X  method, we can rewrite the expression for the  

one-electron equation as; 
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1

3
2

1 2 2 1 1 1

1 12

1 1 3
(r ) dr 3 (r ) (r ) (r )

2 4

v

k k k
v l

v

Z

r r
     

    

 
  
         

   

 22) 

  The SCF method using equation (22) is called “Hartree-Fock-Slater” 

method. 

 The LCAO MO approximation 

  The electronic structure for a molecule is obtained by solving the 

molecular Schrödinger equation. When applying the variation method to the total 

energy of electrons  , the molecular equation results in the one-electron Schrödinger 

equation; 

1 1 1(r ) (r ) (r )k k kh        (23) 

  where h  is the effective one-electron Hamiltonian, k  the eigenvalue of 

thk  orbital. k  is the wave function of thk  molecular orbital, and the unknown 

function. The molecular orbitals (MO) are in practice always approximated by a linear 

combination of atomic orbitals (LCAO); 

1 1(r ) (r )k ik i
i

c        (24) 

  where ikc  is a coefficient dependent on the molecular orbitals, and i  is 

a set of atomic orbitals. This approximation is called the LCAO MO method. 

  Introducing equation (24) into equation (13) leads to; 

1 1 1(r ) (r ) (r )ik i k ik i
i i

h c c            (25) 

  Multiply by *

1(r )i  and integrate over 1dr : 

* *

1 1 1 1 1 1 1(r ) (r ) (r )dr (r ) (r )drjk i j k jk i j
j j

c h c         (26) 

  Here below defines a “resonance integral” and “overlap integral” with 

elements 
jiH  and 

ijS : 
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*

1 1 1 1(r ) (r ) (r )drji i jH h   , *

1 1 1(r ) (r )drij i jS      (27) 

  Equation (26) is then transformed to: 

( ) 0ij k ij jk
j

H S c      (28) 

  This set of homogeneous linear equations is, generally a “secular 

equation”, equivalent to the following matrix: 

(H S)C 0        (29) 

  where H , S , and C  is the matrix with the matrix elements 
ijH , 

ijS , 

and 
jkc . 

Fermi-Dirac distribution function 

 The Fermi-Dirac distribution function (Kittel & Kroemer, 1980) may be 

derived in several steps by use of a modern approach to statistical mechanics. The 

notation is such that conventional entropy S is related to the fundamental entropy   

by BS k  , and the Kelvin temperature T  is related to the fundamental temperature 

  by Bk T  , where Bk  is the Boltzmann constant with the value 1.38066×10-23 J K. 

The leading quantities are the entropy, the temperature, the Boltzmann factor, the 

chemical potential, the Gibbs factor, and the distribution functions. The entropy 

measures the number of quantum states accessible to a system. A closed system 

might be in any of these quantum states and with equal probability. The fundamental 

assumption is that quantum states are either accessible or inaccessible to the system, 

and the system is equally likely to be in any one accessible state as in any other 

accessible state. Given g  accessible states, the entropy is defined as log .g   The 

entropy thus defined will be a function of the energy U , the number of particles ,N  

and the volume V  of the system. 
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 The fundamental temperature   is defined by the relation; 

,

1

N VU





 
  

 
      (30) 

 The use of 1/  assures that energy will flow from high   to low  ; a no 

more complicated relation is needed. 

 Let a small system with only two states; one at energy 0 and one at 

energy  , be placed in thermal contact with a large system that is called the 

reservoir. The total energy of the combined systems is 0U ; when the small system is 

in the state of energy 0, the reservoir has energy 0U  and will have 0( )g U  states 

accessible to it. By the fundamental assumption, the ratio of the probability of finding 

the small system with energy   to the probability of finding it with energy 0 is; 

0 0

0 0

( ) exp[ ( )]( )

(0) ( ) exp[ ( )]

g U UP

P g U U

  



 
    (31) 

 The reservoir entropy   may be expanded in a Taylor series; 

0 0 0( ) ( ) ( )U U U
U

 
    



 
    

 
  (32) 

 Temperature is defined by equation (30). Higher order terms in the 

expansion may be dropped. Cancellation of the term 
0exp[ ( )]U , which occurs in the 

numerator and denominator of equation (31) after the substitution of equation (32), 

leaves us with; 
( )

exp( )
(0)

P

P


        (33) 

 This is Boltzmann’s result. To show its use, the calculate thermal average 

energy   of the two-state system in thermal contact with a reservoir at 

temperature  ; 

exp( / )
( ) 0 (0) ( )

1 exp( / )
i i

i

P P P
  

    
 


    

 
  (34) 
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 where the normalization condition is imposed on the sum of the 

probabilities; 

(0) ( ) 1P P         (35) 

 The argument can be generalized immediately to find the average energy 

of a harmonic oscillator at temperature   as in the Planck law. 

 The most important extension of the theory is to systems that can transfer 

particles as well as energy with the reservoir. For two systems in diffusive and thermal 

contact, the entropy will be at maximum with respect to the transfer of particles as 

well as to the transfer of energy. Not only must 
,( / )N VU   be equal for the two 

systems, but 
,( / )U VU   must also be equal, where N  refers to the number of 

particles of a given species. The new equality condition is the occasion of the chemical 

potential  ; 

,U VU

 



 
   

 
      (36) 

  For two systems in thermal and diffusive contact, 
1 2   and 

1 2  . 

The sign in equation (36) is chosen to ensure that the direction of particle flow is from 

high chemical potential to low chemical potential as equilibrium is approached. 

  The Gibbs factor is an extension of the Boltzmann factor equation (37) 

and allows us to treat systems that can transfer particles. The simplest example is a 

system with two states; one with 0 particles and 0 energy, and one with 1 particle 

and energy  . The system is in contact with a reservoir at temperature   and 

chemical potential  . We extend equation (32) for the reservoir entropy; 

0 0 0 0

0 0

( ; 1) ( ; ) 1U N U N
U N

 
   

    
        

    
    

0 0( ; )U N
 


 

                (37) 

  By analogy with equation (31), we have the Gibbs factor 
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(1, )
exp[( ) / ]

(0,0)

P

P


       (38) 

  This measures the ratio of the probability that the system is occupied by 

1 particle at energy   to the probability that the system is unoccupied, with energy 0. 

The resultant equation (38) after normalization is readily expressed as; 
1

(1, )
exp[( ) / ] 1

P 
  


 

    (39) 

  This is the Fermi-Dirac distribution function. 

 

Charge and heat transport properties  

 An electron is transported under a small electric field, temperature gradient, 

and concentration gradient (and thus chemical potential gradient) along the Z  

direction. Consider an infinitesimal point at height Z . At this point, the distribution 

function of electrons is f, and the number of electrons with an energy between E  and 

dE E  is ( )dfD E E . Since the electric field, temperature gradient and concentration 

gradient are small, these electrons will have almost the same probability to move 

toward any direction. Also because the solid angle of a sphere is 4π , the probability 

for an electron to move in the ( ,  ) direction within a solid angle d sin d d     

will be d / 4π . A charge q  ( q e   for electrons and q e   for holes) moving in 

the ( ,  ) direction within a solid angle d  causes a charge flux of cosqv   and 

energy flux cosEv  in the Z  direction, where   is defined as the angel between 

the velocity vector and the positive Z  direction with a range between 0  to π . Hence, 

the charge flux and energy flux in the Z  direction carried by all electrons moving 

toward the entire sphere surrounding the point are respectively; 

2

0 0 0

1
sin cos ( )

4Z
E

J d d fD E qvdE
 

 

   




  

      (40) 

2

0 0 0

1
sin cos ( )

4ZE
E

J d d fD E EvdE
 

 

   




  

        (41) 
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 With the relaxation-time approximation, the Boltzmann transport equation 

for electrons take the following form; 

0f ff f
v f qE

t p 

 
    

 
     (42) 

 where q e   for electrons and q e   for holes. For the steady state case 

with a small temperature/concentration gradient and electric field in the Z  direction 

only, the variation of the distribution function in time is much smaller than that in 

space, or f
v f

t


 


, so that  we can assume 0

f

t




. The temperature gradient 

and electric field is small so that the deviation from an equilibrium distribution 0f  is 

small, i.e. 
0 0f f f , ,0ff   and 

E

f
v

pd

dE

E

f

p

f

p

f


















 000 
 . With these 

assumptions, equation (41) becomes 

0 0
0

f f f
v f qE

E 

  
    

 
   (43) 

The equilibrium distribution of electrons is the Fermi-Dirac distribution; 

0

B

B

1 1
( ) ;  

exp( ) 1( )
exp 1

E
f k

k TE k

k T







  

 
 

 

 (45) 

 where   is the chemical potential that depends strongly on carrier 

concentration and weakly on temperature. Both E and   are measured from the band 

edge (e.g. 
CE  for conduction band). This reference system essentially sets 0CE   at 

different locations, although the absolute value of 
CE  measured from a global 

reference varies at different locations (
FE   in Chen). In this reference system 

corresponding to Fig. 6.9b in Chen, the same quantum state ( ,  ,  )x y zk k k k  has the 

same energy 
m

kkk
EkEkE

zyx
C

2

)(
)()(

2222 



 at different locations. Hence 

this reference system yields the gradient 0)(  kE


, simplifying the following 

derivation. If we use a global reference level as our zero energy reference point, as in 

three dimension, the quantum state ( ,  ,  )x y zk k k k  has different energy 
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2
2 2 2( ) ( )

2
x y z CE k k k k E

m
     because 

CE  changes with locations. In this case,

0)(  CEkE


, makes the following derivation somewhat inconvenient. However, 

both reference systems will yield the same result.  

 From equation (43), 

Tkd

df

Ed

df

E

f

B

1000















 ;   or     
E

f
Tk

d

df
B




 00


  (44) 

 From equation (44), 










E

f
Tk

d

df
f B

00
0     (45) 

 Also because 0)(  kE


 for the reference system, then using; 

2 2

B B B B

1 1
( ( ) )

E E
E k T T

k T k T k T k T

 
  

 
            (46) 

 From equation (45-46), 

0
0

f E
f T

E T




  
      

  
      (47) 

 Combining equation (42) and (47) obtains 

0 0f f fE
v T qE

T E






  
      

 
  (48) 

 Note that  
        (49) 

 where e is the electrostatic potential (also called electrical potential, which 

is the potential energy per unit of charge associated with a time-invariant electric field 

E


); From equation (48) and (49), obtain; 

0 0
e

f f fE
v T q

T E


 



  
       

 
  (50) 

From equation (50), we obtain; 
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0
0

fE
f f v T

T E




 
     

 
   (51) 

 where 
eq    , is the electrochemical potential that combines the 

chemical potential and electrostatic potential energy. This definition of the 

electrochemical potential is the definition in Chen’s text multiplied by a factor of q . 

Both definitions are used in the literature, though the definition here is used more 

widely. Electrochemical potential is the driving force for current flow, which can be 

caused by either the gradient in chemical potential (e.g. due to the gradient in carrier 

concentration) or the gradient in electrostatic potential (i.e. electric field). When you 

measure voltage V across a solid using a voltmeter, you actually measure the 

electrochemical potential difference   per unit charge between the two ends of the 

solid, i.e. qV / . If there is no temperature gradient or concentration gradient 

in the solid, the measured voltage equals e . In the current case all the gradients 

and E


are in the Z direction, so from equation (50),  

0
0 cos z

fd E dT
f f v qE

dZ T dZ E

 
 

 
     

 
   

0
0 cos

fd E dT
f v

dZ T dZ E


 

  
    

 
             (52) 

 Combining equation (40) and (52), obtains the charge flux and energy flux 

respectively; 
2

0
0 0 0

1
sin cos ( )

4Z
E

J d d f D E qvdE
 

 

   




  

     

2
2 20

0 0 0

1
sin cos ( )

4
z

E

f d E dT
d d D E qv qE dE

E dZ T dZ

 

 

 
    





  

  
      

  
    (53a) 

 and 

2

0
0 0 0

1
sin cos ( )

4ZE
E

J d d f D E EvdE
 

 

   




  

     

2
2 20

0 0 0

1
sin cos ( )

4
z

E

f d E dT
d d D E Ev qE dE

E dZ T dZ

 

 

 
    





  

  
      

  
  (53b) 
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 Note that the first term on the right hand side of equation (53) is zero and 

the second term yields; 

20

0

1
( )

3Z z
E

f d E dT
J D E qv qE dE

E dZ T dZ

 






  
    

  
  (54a) 

20

0

1
( )

3ZE z
E

f d E dT
J D E Ev qE dE

E dZ T dZ

 






  
    

  
  (54b) 

 Note that 

2

2

1
mvE           (55) 

 Use equation (55) to eliminate v  in equation (56), and obtain; 

 0

0

2
( )

3Z
E z

fq d E dT
J D E E qE dE

m E dZ T dZ

 






  
    

  
 

0

0

2
( )

3 E

fq d E dT
D E E dE

m E dZ T dZ








   
   

  
    (56a) 

20

0

2
( )

3ZE z
E

f d E dT
J D E E qE dE

m E dZ T dZ

 






  
    

  
       (56b) 

 The energy flux from equation (56b) can be broken up into two terms as 

follows; 

 20

0

2
( )

3ZE z
E

f d E dT
J D E E qE dE

m E dZ T dZ

 






  
    

  
 

0

0

2
( ) ( )

3
z

E

f d E dT
D E E E qE dE

m E dZ T dZ

 
 





  
     

  
   

     0

0

2
( )

3
z

E

f d E dT
D E E qE dE

m E dZ T dZ

 
 





  
    

  
 

0

0

2
( ) ( )

3

Z
z

E

f Jd E dT
D E E E qE dE

m E dZ T dZ q

 
 





  
      

  
  

0

0

2
( ) ( )

3

Z

E

f Jd E dT
D E E E dE

m E dZ T dZ q


 





   
     

  
      (57) 

 where 
ZJ  is the current density or charge flux given by equation (56a). At 

temperature 0T  K, the first term on the right hand side of equation (57) is zero, so 

that the energy flux at 0T  K is; 
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( 0 )
Z

Z
E

J
J T K

q


      (58) 

 Because electrons don’t carry any thermal energy at 0T  K, the thermal 

energy flux or heat flux carried by the electrons at 0T   is; 

 ( ) ( ) ( 0)
Z Z Zq E EJ T J T J T    

0

0

2
( ) ( )

3 E

f d E dT
D E E E dE

m E dZ T dZ


 





   
    

  
   (59) 

 Equations (2.4.17a) and (2.4.20) can be rearranged as; 

11 12

1
Z

d dT
J L L

q dZ dZ

   
      

  
   (60a) 

21 22

1
Zq

d dT
J L L

q dZ dZ

   
      

  
    (60b) 

 where  









0

0
2

11 )(
3

2

E

dEEED
E

f

m

q
L       (61a)

 







0

0
12 )()(

3

2

E

dEEEED
E

f

mT

q
L      (61b) 

12
0

0
21 )()(

3

2
TLdEEEED

E

f

m

q
L

E

 









    (61c)) 

 







0

20
22 )()(

3

2

E

dEEEED
E

f

mT
L      (61d) 

 In the case of a zero temperature gradient and zero carrier concentration 

gradient, 0
dZ

dT and 0
dZ

d , equation (60a) becomes; 

11 11 11

1 1
Z z z

d d
J L L E L E

q dZ q dZ

   
        

   
   (62) 

 The electrical conductivity is defined as; 









0

0
2

11 )(
3

2

Ez

dEEED
E

f

m

q
L

E

J
Z     (63) 

มห
าวทิ

ยาล
ัยร
าช
ภัฏ
สก
ลน
คร



28 

 Seebeck coefficient 

  In the case of a non-zero temperature gradient along the Z  direction, a 

thermoelectric voltage can be measured between the two ends of the solid with an 

open loop electrometer, i.e. 0zJ  . Hence from equation (60a) comes; 

11 12

1
0

Z

d dT
J L L

q dZ dZ

   
       

  
  (64) 

  Therefore 

11

12

L

qL

dZ

dT

dZ

d



















 

           (65) 

  As discussed above, the voltage that the electrometer measure between 

the two ends of the solid is qV / . Similarly, qddV / . The Seebeck 

coefficient is defined as the ratio between the voltage gradient and the temperature 

gradient for an open loop configuration with zero net current flow 

 12

11

1

dV d

LdZ dZ
S

dT dTq L

dZ dZ

   
   
       
   
   
   

     

        

0

0

0

0

( ) ( )
1

( )

E

E

f
D E E E dE

E

qT f
D E E dE

E

 











 
 

 
 
 

 





 

20

0

0

0

( )
1

( )

E

E

f
D E E dE

E

qT f
D E E dE

E















 
 

   
 
 

 





         (66) 

  Combining equation (66), (63), and (60a), produces;  

1
Z

d dT
J S

q dZ dZ
 
   

      
  

 

  The scattering means free time depends on the energy, and assumes; 
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rE0                  (67) 

  where 
0  is a constant independent of E  and E  is measured from the 

band edge for either electrons or holes, the density of states; 

2/1

32

2/3

2

)2(
)( E

m
ED


     (68) 

  Combine equation (66) and (68); 

2 2 1/20 0

0 0

1 1/20 0

0 0

( )
1 1

( )

r

E E

r

E E

f f
D E E dE E dE

E E
S

qT qTf f
D E E dE E dE

E E



 



 

 

 

 

 

 

    
   

         
    
   

    

 

 

   (69) 

  The integrals in equation (69) can be simplified using the product rule; 
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  Using equation (70) to reduce equation (69) to 

 

  


































0

2/1
0

0

2/3
0

2/3

2/5
1

E

r

E

r

dEEfr

dEEfr

qT
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  The two integrals in equation (71) can be simplified with the reduced 

energy 
B/E k T    

   
1

0 0

0 0

( , ) ( , )
nn n

B

E

f E E dE k T f d    
 





   

 
1

B B( );    /
n

nk T F k T  


            (72) 

  where the Fermi-Dirac integral is defined as  

0

0

( ) ( , ) n

nF f d    


            (73) 
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  Use equation (72) to reduce equation (71) to  

3/2 3/2

B
B

1/2 1/2
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r r

r r
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r F r F
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 
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 

      
       

           
             
      

  (74) 

 

   Seebeck coefficient for metals 

    For metals with 
B/ 0k T   , the Fermi-Dirac integral can 

be expressed in the form of a rapidly converging series; 
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            (75) 

    If we use only the first two terms of equation (75) to express the 

two Fermi-Dirac integrals in equation (74), we obtain the following ( q e   for 

electrons in metals); 
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3/2 2 5/2 2
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2

B B
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3

3 2
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e E

   
    

  
            (76) 

    This value can be either positive or negative depending on r , or 

how the scattering rate depends on electron energy. This values also ignores the weak 

temperature dependence of   and assumes 
FE  , the Fermi level that is the 

highest energy occupied by electrons at 0 K in a metal.  

   Seebeck coefficient for non-degenerate semiconductors 

    In non-degenerate semiconductors,   is located within the band 

gap with a distance from the conduction or valence band edges larger than 
Bk T , so 

that 
B

3
E

k T


 


   . This is true for both electrons in the conduction band and 

holes in the valence band. For holes in the valence band, the energy is higher at a 

position further down and below the valence band edge.  

    When 
B

3
E

k T


 


   , the Fermi-Dirac integrals become; 

 0
0 0 0

1 1
( ) ( , )

exp( ) 1 exp( )

n n n

nF f d d d        
   

  

    
  

 

0

exp( ) exp( ) exp( ) ( 1)nd n    


                        (77) 

    where the gamma function has the property 

)()exp()1(
0

nndn n  


                  (78) 
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    Equation (78) can be used to reduce equation (74) to; 
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2
S E k T r

qT

  
     

  
                             (79) 

    In this equation,   is measured from the conduction band edge 

CE  for electrons and from the valence band edge 
VE  for holes. Located within the 

band gap   is negative for electrons, and is also negative for holes, because the hole 

energy is higher when the energy level is moved further down. Also q e   for 

electrons and q e   for holes, so that the Seebeck coefficient is negative for 

electrons in the conduction band and positive for holes in the valence band. If   is 

measured from a global reference instead of the band edge as the zero energy point, 

equation (79) can be expressed for electrons and holes separately; 

B

1
( ( 5 / 2) ) 0,e cS E r k T

eT
            for electrons     (80) 

B

1
( ( 5 / 2) ) 0,h vS E r k T

eT
             for holes          (81) 

    The effective Seebeck coefficient in nondegenerate 

semiconductors receive contributions from both electrons and holes, i.e. 

he

hhee

pn

SpSn
S








      (82) 

    where n  and p  are electron and hole concentrations, 

respectively, and e  and h  represent the mobility of electrons and holes, 

respectively. The mobility is defined in the following section on Wiedemann-Franz law. 
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 Electrons thermal conductivity 

  From equation (60a); 

12

11 11

1 1
Z

Ld dT
J

q dZ L dZ L

  
     

 
  (83) 

  Use equation (83) to eliminate 
dZ

d
 from equation (60b) and obtain; 

21 12 21
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11 11
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J J L J k

L L dZ dZ
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           

    
 (84) 

  The Peltier coefficient  and thermal conductivity ek are defined in the 

following equations. In the case of zero current 0ZJ   and non-zero temperature 

gradient along the Z  direction;  
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
    (85) 

  The thermal conductivity of electrons; 
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  Equation (86) can be reduced to the following equation by expanding 

the ( E  ) term in the two integrals; 
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 (87) 
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  For metals, S is usually very small so that from equation (86); 
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  Note that 
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  Comparing equation (89) with equation (44) produces; 

T

f
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f


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
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 00
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  Combining equation (89) and (90) gives; 
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  Then use 2 / 2E mv  to rewrite equation (91) as;  

 
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
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20 )()(
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E
e dEEvED

T

Ef
k      (92) 

  When E  is far away from  , )(0 Ef  remains as either 0 or 1 as the 

temperature changes, so that  
T

Ef



 )(0 is non-zero only when E  is close to  . 

Therefore, equation (92) can be approximated by taking Fv v  and F  , i.e. the 

Fermi velocity and the scattering mean free time of Fermi electrons; 

FFeeFF
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    (93) 

  This is essentially the Kinetic theory expression of thermal conductivity.  
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 Wiedemann-Franz law 

  From equation (63), the electrical conductivity is; 


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dEEED
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J
Z    (93) 

  
E

Ef



 )(0  is non-zero only when E  is close to  , and can be 

approximated to as a delta function  

)(
)(0  
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
E

E

Ef
    (94) 

  Combining equation (94) and (93) gives; 
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  Using 2/
2

FF mvE   reduces equation (95) to 

FFFvD
e

 2
2

3
          (96) 

  Note that, the electron concentration can be calculated as;  
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     (97) 

  Combining equation (97) and (95) gives; 
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m

e
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2

        (98) 

  Use the following definition of electron mobility; 
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  From equation (97) 

ene          (100) 

  Note that, e is electron mobility and is different from   which is 

chemical potential. Equation (98) and (92) can be used to calculate the ratio between 

the electron thermal conductivity and electrical conductivity. 
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eFF
e 






    (101) 

  Here it is assumed that the F  is the same in the thermal conductivity 

and electrical conductivity expressions. These two F  terms can be different. 

  Note that, the electron specific heat of metals has been derived 

previously as 

2
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  Combining equation (101) and (102) gives; 
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  The Lorentz number is defined as; 
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2
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      (104) 

  So that the Wiedemann-Franz law is;  
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 Electrical conductivity 

  Combining equation (63), (67) and (68) gives; 
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  The integral in equation (105) can be simplified using the product rule in 

equation (70); 
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  Equation (107) uses the Fermi-Dirac integral in equation (72) and (73); 
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     (108) 

   Electrical conductivity for metals 

    For metals with B/ 0k T   , the Fermi-Dirac integral can 

be expressed in the form of a rapidly converging series as shown for equation (75); 
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    where   is chemical potential, assuming FE  . Taking q e   

and FE   in equation (109); 

2 3/2 2
3/2 2 2 1/2

metal F B F2 3

(2 ) 3
( ) ( ) 2 ( )

3 6 4

r re m
E k T r r E

m






   
     

  
    (110) 

   Electrical conductivity for semiconductors 

    For semiconductors 
B

3
E

k T


 


    using the Fermi-Dirac 

integrals from equations (76) and (78) in equation (107); 
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



  
     

   
                     (111) 

    Take q e   and FE   in equation (111); 

2 3/2

F
semi B2 3

B

2 (2 ) 3
exp

3 2

Ee m
k T r

m k T




  
    

   
             (112) 

 

Molecular dynamics 

 Molecular dynamics method  

  Molecular dynamics (MD) is a computer simulation technique that allows 

one to predict the time evolution of a system of interacting particles (atoms, molecules, 

granules, etc.). The basic idea is simple. First, for a system of interest, one has to 

specify a set of initial conditions (initial positions & velocities of all particles in the 

system) and interaction potential for deriving the forces among all the particles. 

Second, the evolution of the system in time can be followed by solving a set of 

classical equations of motion for all particles in the system. Within the framework of 
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classical mechanics, the equations that govern the motion of classical particles are the 

ones that correspond to the second law of classical mechanics formulated by Sir Isaac 

Newton; 

2

2

i i
i i i i i

v r
F m a m m

t t

 
  

 
    (113) 

  where F , m , r , v  and a  are force, mass, position, velocity and 

acceleration for the thi  particle, t  is time. If the particles of interest are atoms, and if 

there are a total of N  of them in the system, the force acting on the thi  atom at a 

given time can be obtained from the interatomic potential 1 2 3( ,  ,  ,  ,  ... , )NU r r r r  that, 

in general, is a function of the positions of all the atoms; 

1 2 3( ,  ,  ,  ,  ... , )i i NF U r r r r      (114) 

  Once the initial conditions and the interaction potential are defined, the 

equations of motion can be solved numerically. The results of the solution are the 

positions and velocities of all the atoms as a function of time, ( ),   ( )i ir t v t . The solution 

of the MD method can be obtain by solving equation (113) and (114).  

  Thus; 

21

2
i ij Ki ij i iE U E U m v             (115) 

  where iE  is total energy for the thi  particle, obtained by the sum of 

energy in the system and KiE  is the kinetic energy for the thi  particle. 

  Pair potentials 

   The total potential energy of the system of N  atoms interacting via 

pair potential is: 

1 2 3 2( ,  ,  ,  ,  ... , ) ( );      N ij ij j i

i j i

U r r r r U r r r r


      (116) 

   Commonly used examples of pair potentials are;  
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   Hard/soft spheres - the simplest potential without any cohesive 

interaction.  Useful in theoretical investigations of some idealized problems.  

   hard; 

0

0

           for      
( )

0           for      

ij

ij

ij

r r
U r

r r

 
 


      (117) 

   soft; 

0

( )

n

ij

ij

r
U r

r



 
  
 

          (118) 

   Ionic - Coulomb interaction of charges ( q ), strong, long range 

repulsion or attraction; often added to other functional forms to account for charge-

charge interaction or polarization. 

( )
i j

ij

ij

q q
U r

r
                   (119) 

   Lennard-Jones - van der Waals interaction in inert gases and 

molecular systems. Often used to model general effects rather than properties of a 

specific material (Lennard-Jones, 1924, pp.463-477). 

12 6

( ) 4ij

ij ij

U r
r r

 

    
             

       (120) 

   where   and   are depth of the potential well and the finite 

distance at which the inter-particle potential is zero, respectively.  

   Morse - similar to Lennard-Jones but is a more “bonding-type” 

potential and is more suitable for cases where attractive interaction comes from the 

formation of a chemical bond.  Proposed by Morse (1929, pp.57-65). It was a popular 

potential for the simulation of metals that have fcc and hcp structures. A fit for many 

metals is given by Girifalco and Weizer (1959, pp.687-690). 
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    0 02
( ) e 2eij ijr r r r

ijU r
 


   

        (121) 

   where   is the shape of the potential well.  

   6-exponential Buckingham (1938, pp.264-283) potential-

exponential term (Born-Mayer) provides a better description of strong repulsion due to 

the overlap of the closed shell electron clouds, which is important in the simulation of 

bombardment by energetic atoms or ions, etc.; 

BM/ 6( ) e /ijr R

ij ijU r A B r


         (122) 

   where BMR  is the distance of Born-Mayer 

   One can assume a functional form for the potential function and then 

choose the parameters to reproduce a set of experimental data. This gives so-called 

“empirical potential functions”. The choice of a potential function that approximates the 

actual (unknown) solution is a difficult task. Design of the potential function and choice 

of the parameters is often based on its fit with the experimental data that is available, 

(e.g. equilibrium geometry of stable phases, cohesive energy, elastic moduli, 

vibrational frequencies, temperatures of the phase transitions, etc.). 

 Green-Kubo relation 

  Simply stated, the Green-Kubo relation for bulk viscosity (Zwanzig, 

1965, pp.67-102) is, 

  
B 0

1
d ( ) ( ) (0) (0)V t p t V t pV p V pV

Vk T




       (123) 

  The Green-Kubo relation for thermal conductivity can be derived by 

similar arguments to those used in the viscosity derivation.  
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  Firstly, for the velocity gradient, the internal energy per unit volume 

U  obeys a continuity equation, Qd / dU t J   . Secondly, we note that Fourier's 

definition of the thermal conductivity coefficient  , is QJ T   . Combining these 

two results we obtain 

2d

d

U
T

t
            (124) 

  Unlike the previous examples, both U  and T  have nonzero equilibrium 

values; namely, U  and T . A small change in the left-hand side of the equation 

(2.5.11) can be written as 
d

( )
d

U U

t
 

 
  . By definition 

d
0

d

U

t
 , so for the 

first order in  , we have d
0

d

U

t
  . Similarly, the spatial gradient of T  does not 

contribute, so it can be written as; 

2d

d

U
T

t
             (125) 

  The next step is to relate the variation in temperature T  to the 

variation in energy per unit volume ( )U . To do this we use the thermodynamic 

definition; 

1 ( )
V

V V

E U
C

V T T




 
 

 
      (126) 

  where VC  is the heat capacity at constant volume. We see from the 

second equality, that a small variation in the temperature T  is equal to 

( ) / VU C  . Therefore; 

2

V

U U
C


 


           (127) 

  If /T VD C   is the thermal diffusivity, then in terms of the 

wavevector, the dependent internal energy density equation (127) becomes; 

2(k, ) k (k, )TU t D U t            (128) 
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  If (k, )C t  is the wavevector dependent internal energy density 

autocorrelation function,  

(k, ) (k, ) ( k,0)C t U t U           (129) 

  Then the frequency and wavevector dependent diffusivity is the memory 

function of the energy density autocorrelation function; 

2

(k,0)
(k, )

k (k, )T

C
C

i D


 



      (130) 

  Equation (130) can be converted to an expression for the diffusivity in 

terms of a current correlation function. From the flux autocorrelation function ( )t  as 

shown equation (131) and (132). 

*( ) ( ) (0)t A t A       (131) 

         
2

2

00 0

d ( ) d ( ) d ( )
( ) d e e d e

d d d

st st stC t C t C t
s t s t

t t t


 

   
    

 
   

2 2

0
0

e ( ) d e ( ) ( ) (0)st sts C t s t C t s C s sC




              (132) 

  if 2 2d / dC t    then, 

2

Q Q(k, ) k (k, ) ( k,0)x xt J t J        (133) 

  Using equation (132), the analogue is obtained; 

( )
( )

( )
(0)

s
K s

s
C

s








    (134) 

2 (k,0) (k, ) (k, )
k (k, )

(k, ) (k, )
(k,0)

T

C i C
D

C
C

i

   


  




 



    (135) 

B

1
(k, ) (k, ) ( k,0)yx yxN t P t P

Vk T
       (136) 

มห
าวทิ

ยาล
ัยร
าช
ภัฏ
สก
ลน
คร



44 

  By defining the analogue of equation (136) (called the autocorrelation 

function of the wavevector dependent shear stress), that is 2

Q(k, ) k (k, )t N t  , 

equation (135) for the thermal diffusivity can be written in the same form as the 

wavevector dependent shear viscosity. That is; 

Q

2

Q

(k, )
(k, )

k
(k,0) (k, )

T

N
D

C N
i











     (137) 

  Note that, the zero wavevector limit must be taken before the zero 

frequency limit is taken, and the canonical ensemble fluctuation formula is used for the 

specific heat; 

2

B

(0,0)
V

C
C

Vk T
        (138) 

  The Green-Kubo expression for the thermal conductivity is obtained as; 

Q Q2

B 0

d ( ) (0)x x

V
t J t J

k T




        (139) 

  (Sarman & Evans, 1993, pp.9021-9036) 

 

Carbon nanotubes 

 Carbon nanotubes (CNTs) are a tubular form of carbon with an exceptionally 

high aspect ratio, located structurally between planar graphene/graphite layers and 

molecular fullerenes.  Their electrical properties have initiated a tremendous number of 

theoretical and experimental studies. This has been supported by progress in the 

micro-fabrication processes of metals and semiconductors, which has opened the way 

to electrical contacting of single molecules or a relatively small number of molecules. 

This and the potential use of CNTs for organic based integrated circuits as conducting 

wires on a molecular scale, as well as being an electrically active element itself, whilst 
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also being an almost perfect model system for fundamental research, justifies the 

fascination of this molecular based structure (Loiseau, Launois, Petit, Roche & Salvetat, 

2006; Reich, Thomsen & Maultzsch, 2004). 

 A single walled carbon nanotube (SWNT) is structurally equivalent to a 

sheet of graphene rolled into a tube (see Figure 5), i.e. each carbon atom has three 

neighbors, lying in the plane of the tube wall in a hexagonal arrangement. Such an 

arrangement minimizes the number of carbon dangling bonds since it has no edge 

sites compared to an equivalent graphene sheet. Energetically offset against this is the 

out-of-plane distortion caused by the curvature of the tube wall. 

 
Figure 5 Single walled nanotubes arranged in bundles (SWNT) 

 Multi-walled nanotubes (MWNTs) consist of multiple tubes arranged 

coaxially, with a typical inter-wall spacing of 0.34-0.36 nm, reminiscent of 

turbostratic graphite (see Figure 6).  In principle MWNTs span the whole gamut from 

double walled nanotubes (DWNTs) - having diameters close to those of SWNTs - up to 

macroscopic carbon fibers, which have been shown to sometimes feature nanotubes at 

their cores.  Obviously a material spanning such a wide range of dimensions from nano 

to microscopic can have a similarly varying range of properties.  What is commonly 

referred to as a MWNT typically has a diameter much greater than that of SWNTs, 

with the number of concentric walls varying from two up to several hundreds.  
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Figure 6 Multi-walled nanotube (MWNT) tube wall 

 Physical structure of carbon nanotubes 

  A carbon nanotube can be obtained by rolling up the graphene sheet 

seamlessly along a certain direction. For this it is very importan to define at least two 

lattice sites which have to be included the overlap. All of the others are then sites are 

determined by the six-fold symmetry of the graphene lattice and the cylindrical 

configuration of the CNT. These two initial points can be connected by the chiral 

vector; 

, 1 2n mC na ma       (140) 

  This is just a linear combination of 1a  and 2a  where n , m  are 

integers. The symmetry of the graphite lattice is such that chiral vectors with m n  

have symmetric equivalents with m n , so therefore condition is imposed that m n

. Thus a particular SWNT can be defined using a pair of integer indices ( ,n m ), which 

together define the chiral vector of the nanotube, as shown in Figure 7. 
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Figure 7 Graphene sheet showing the sixfold-symmetry (left) and chiral vector 

  Due to the sixfold symmetry of the graphene lattice, all possible 

structures can be classified by three general configurations: armchair CNTs, for which 

n m , zigzag CNTs that have 0n   and all other CNTs which are referred to as 

chiral, as shown in Figure 8. This use of the term chiral is to some extent misleading 

(indeed, helical is more appropriate). Often armchair and zigzag nanotubes are also 

called chiral, although their mirror images are identical to the original. 

 

 
Figure 8 The three types of CNTs viz. armchair chiral and zig-zag  

    (Johnson, & Kohlmeyer, About Carbon / Boron Nitride 

Nanostructure Builder Plugin, http://www.ks.uiuc.edu/Research/ 

vmd/plugins/nanotube, 4 January 2016) 
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 Electronic structure of carbon nanotubes 

  The electronic properties of the graphene sheet (and thus of the CNTs) 

are mainly determined by the  -electrons, since the electrons in the sp2-hybridised 

orbitals are strongly localized. In particular, the interaction between the pz-orbitals 

leads to (i) the delocalization of the  -electrons and (ii) the formation of bonding  

 -bands and antibonding * -bands. 

  For CNTs, periodic boundary conditions are introduced to the planar 

two-dimensional graphene-sheet model due to the translational symmetry around the 

circumference of the CNT. To discuss this further it is convenient to shift our focus to 

reciprocal space. The reciprocal lattice of a graphene layer is again a honeycomb-

lattice. A three-dimensional graph of the energy dispersion of graphene of the two 

lowest sub-bands in the first BZ, is given in Figure 9 (left), derived by tight binding 

calculations (Saito, Dresselhaus & Dresselhaus, 1998). The six points denoted by K at 

the edge of the BZ are the only points where the  - and * -band touch, and are 

the reason graphene is a semi-metal. Seen in projection this gives a hexagonal 

reduced BZ, with the K -points located at the hexagonal corners as show in Figure 

9(right). 

    
 

Figure 9 2D graphene showing six points denoted by K at the edge of the BZ (left)  

             - and * -band from a tight-binding calculation of CNTs (right) 

  It is then clear that the band gap of the nanotube will be determined by 

the position of these lines on the 2D graphene BZ.  Slices which cross the K -points 
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are describing metallic CNTs, as at these points the  - and *  energy band touch. 

This in turn leads to a finite density of states at the Fermi energy FE . Other directions 

correspond to CNTs with a vanishing DOS at FE , resulting in an energy-gap of 

typically less than 1 eV. These CNTs are therefore semiconducting.  

  The information needed to decide whether a CNT is metallic or 

semiconducting can be again extracted from the integers ( ,n m ) that classify each 

CNT, as described above. The pair of indices ( ,n m ) defines the basic electronic 

character of the nanotube, If n m and if 3nm i  (where i =integer, 0i  ) the tube 

is semi-metallic otherwise it is semiconducting. All armchair tubes are metallic 

whereas zigzag and chiral nanotubes can exist as either metallic or semiconducting 

molecular structures, as shown in Figure 10.  

 
Figure 10 Periodic table of carbon nanotubes (Aliofkhazraei, 2015) 

 

  Since all of the above discussion of the electronic properties of isolated 

SWNTs is based around a graphene model, we would expect deviations from this due 

to the effects of curvature on the bonding in the nanotube. For example, C-C bond 

lengths become slightly polarized; axially oriented bonds shorten and circumferential 

bonds elongate by a few fractions of a percent depending on curvature, as curvature 

weakens the non-axial  –bonding and consequent aromaticity. This may have a 

weak effect on conduction pathways and bond site reactivity. 
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 Thermoelectric power of carbon nanotubes 

  The thermoelectric power of early samples, consisting of mats, bundles, 

and multiwalls, showed a large thermopower. Values were as high as 80 μ V K-1 

(Mahan & Jeon, 2004, p. 075405) at room temperature. The variations with in 

temperature, from low to high temperature (T = 300 K), were not linear but had a 

hump, as shown in Figure 11 (left). This hump was attributed to phonon-drag, 

(Romero, Sumanasekera, Mahan, & Eklund, 2002, p. 205410) about which there are 

several theoretical papers. (Scarola, & Mahan, 2002, p. 205405; Vavro et al., 2003, 

p. 065503). However, we now think these theories are all incorrect, even those of the 

author. A carbon nanotube without defects can either be metallic or semiconducting. 

Most researchers expect that the high value of the Seebeck coefficient is found in 

semiconductor tubes, since metallic systems usually have a smaller value for the 

Seebeck. Carbon nanotubes have electron–hole symmetry and the energy bands look 

the same if you rotate them upside down. The transport of holes is identical to the 

transport of electrons. They cancel out, so there is no thermopower. This argument is 

rigorous if the tube is undoped, so the chemical potential is at the point where the 

conducting bands cross in metallic tubes. The usual theory of phonon-drag makes the 

following assumptions:  

  (i) The electron–phonon interaction can cause the thermopower. This 

assumption is incorrect, since the hole–phonon interaction is identical to that of the 

electron–phonon. The interaction with phonons does not break electron–hole symmetry, 

and the thermopower is still zero.  

  (ii) Doping the nanotube moves the chemical potential away from the 

point where there are equal numbers of electrons and holes. However, a small amount 

of doping moves the chemical potential a small amount, and in this region one can still 

find that the transport density of states ( )D   is a constant. According to the Mott 

relation; 
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 
22

B d
ln ( )

3 d

k T
S D

e





    (141) 

  0S   if d ( ) / d 0D    ; which it does in a metallic tube, where   is 

the chemical potential. 

  (iii) The phonon-drag effect only contributes to the thermopower when 

impurities break electron-hole symmetry. Kostyrko (Kostyrko, Bartkowiak, & Mahan, 

1999a, p. 3241; Kostyrko, Bartkowiak, & Mahan, 1999b, p. 10735) calculated the 

density of states for a metallic (10,10) armchair tube, which contained about 1% 

nitrogen impurities. The density of states is shown in Figure 11(right) as the dashed 

line. The solid line in the Figure is the density of states without impurities, which is 

indeed constant near the zero of energy. 

 

Figure 11 Seebeck coefficient versus temperature (right) and density of state of  

              a (10,10) CNTs with 1% nitrogen impurity (right) 

  The nitrogen impurities cause the resonance in the density of states to 

move close near to zero energy. Mahan showed it was actually a resonance 

associated with the semiconductor band that was higher in energy. (Mahan, 2004, p. 

125407) This resonance structure gives rise to a nonzero Seebeck coefficient, and 

accounts for the large values observed in the early experiments. The early 

measurements of the Seebeck found large values caused by band resonances from 

impurity states. 
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Literature reviews 

 I will review the history of Calcium Manganese Oxide in the field of 

thermoelectric research, as well as the development of thermoelectric properties. 

 Generally, a Calcium Manganese Oxide (CaMnO3) compound is an n-type 

thermoelectric material. CaMnO3 has two lattice structures. One lattice is the 

Perovskite structure (space group number: 221, space group symbol: Pm-3m) with 

lattice parameters a = b = c = 7.46 Å. The other lattice is the orthorhombic structure 

(space group number: 62, space group symbol: Pnma) with lattice parameters a 

=5.2812 Å, b = 5.2753 Å and c = 7.48 Å. 

 Ansell (Ansell, Modrick, Longo, Poeppelmeier, & Horowitz, 1982, pp.1795-

1797) reported that Ca2Mn3O8 has a monoclinic structure with space group symbol 

C2/m, lattice parameter a=11.0144 Å, b =5.8513 Å, c=4.92422 Å, angle 

=109.735º and density 4.13 g cm-3. This is the first reported example of a compound 

possessing pragmatically coordinated Ca2+ ions. They separate Mn3(O8)4- sheets 

formed by the edgs-sharing of distorted MnO6 octahedra. 

 Reller (Reller, Jefferson, Thomas & Uppal, 1983, pp.913-914) studied 

CaMnO2.8 by a high-resolution electron microscopy technique and computer 

simulation. He reported that nonstoichiometric phase CaMnO2.8 is made up of ordered 

intergrowths of corner-shared MnO8 octahedral and MnO5 square pyramids, with a 

new structure having been formed form the parent ideal cubic structure CaMnO3 

(a=b=c= 3.73 Å) via regular removal of O2-. 

 Ohtaki (Ohtaki et al., 1995, pp.105-111) prepared (Ca0.9M0.1)MnO3  

(M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi) by the solid state reaction (SSR) method. They 

reported that the substitution at the Ca site increased the electrical conductivity, along 

with a moderate decrease in the absolute value of the Seebeck coefficient. 

(Ca0.9Bi0.1)MnO3 exhibits the largest power factor, 2.810-4 W m-1 K-2 at 1000 K-1 and 

shows ZT 0.085 at 1173 K. 
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 Zeng (Zeng, Greenblatt & Croft, 1999, pp.8784-8788) prepared CaMnO3- 

by the sol-gel method at 1373 K. They reported that the valence of Mn in CaMnO3 is 

close to 4+ and Mn3+ is created by two Mn3+ five coordinate sites for each O vacancy. 

The valence of Mn exhibits +3.88, +3.78 at O2.94 and O2.89 respectively. With 

decreased oxygen content, its affect is to increase the unit cell volume. 

 Xu (Xu et al., 2004, pp.147-151) prepared CaMn1–XMXO3 (M = Nb and Ta;  

0  X  0.3 ) by the SSR method. They reported that the lattice parameters a and b 

increased, whereas c decreased with Na- and Ta-doped. Furthermore, Nb5+ and Ta5+ 

have an ion radius greater than Mn4+ which causes the tetragonal structure to change 

to an orthorhombic structure. The electrical resistivity and absolute Seebeck coefficient 

both decreased by virtue of Na- and Ta-doped. Overall a good thermoelectric 

performance was displayed, with the Figure of merit Z = 0.810-4  W m-1  K-2 at 1000 K 

for CaMn0.96Nb0.04O3 and Z = 0.5 10-4  W m-1  K-2 at 1000 K for CaMn0.96Ta0.04O3. 

 Zhou (Zhou & Kennedy, 2006, pp.1595-1598) prepared CaMnO3 by the 

SSR method and studied the expansion of its orthorhombic structure using a  

high-resolution synchrotron X-ray diffraction technique, at room temperature through 

to 1073 K. They reported that the bond length of Mn–O(1) = 1.8972 Å, Mn–O(2) = 

1.8982 Å, and 1.9072 Å increased to 1.9061 Å, 1.9075 Å and 1.9115 Å, respectively. 

The lattice parameter a=5.2674 Å, b=5.2828 Å, c=7.5457 Å increased to a=5.3181 

Å, b=5.3125 Å, c=7.5254 Å as non-phases change. 

 Yamashita (Yamashita, 2007, pp.461-464) prepared Ca1–XNaXMnO3 (0 ≤ x ≤ 

0.025) by the SSR method. He reported that the hole carriers may be doped in 

Ca0.99Na0.01MnO3 which has the lowest resistivity and smallest band gap. The electrical 

resistivity’s are (Ca0.99Na0.01MnO3) < (Ca0.98Na0.02MnO3) < (Ca0.975Na0.025MnO3) < 

(CaMnO3) which indicated Na did not increase the carrier concentration, which 

agrees with a band gap of 0.39 eV for CaMnO3, 0.11 eV for Ca0.99Na0.01MnO3, 0.145 

eV for Ca0.98Na0.02MnO3, and 0.275 eV for Ca0.975Na0.025MnO3. 
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 Sousa (Sousa, et al., 2008, pp.311-319) prepared Ca1–XHoXMnO3  

(0.1  X  0.4) by the citrate-nitrate sol-gel route method. They reported that  

Ca1–XHoXMnO3 has a Perovskite orthorhombic (Pnma) structure at 0  X  0.2 and a 

monoclinic (P21/m) structure at 0.3  X  0.4. The small Ho concentration produces an 

important decrease in the electrical resistivity and induces an electrical transition. 

 Lan (Lan et al., 2009, pp.535-538) prepared Ca1–XLaXMnO3 (X = 0, 0.02, 

0.04, 0.06, 0.08) by the SSR method. They reported that Ca1–XLaXMnO3 has a 

Perovskite orthorhombic and the unit cell increased with increasing La. It’s affect was 

to enhance the power factor. 

 Park (Park, Kwak & Yoon, 2009, pp.550-555) prepared  

Ca1-xBixMn1-yNbyO3 (0x=y0.1) by the SSR method. They reported that the lattice 

parameter of the orthorhombic increased with additional amounts of Bi and Nb. The 

electrical conductivity increased while the Seebeck coefficient decreased as the 

amount of Bi and Nb was increased to x = y = 0.08. Consequently, the thermoelectric 

properties of Ca0.96Bi0.04Mn0.96Nb0.04O3 improved nearly twofold over un-doped 

CaMnO3. 

 Lemonnier (Lemonnier et al., 2010, pp.887-891) prepared 

Ca3.95RE0.05Mn3O10 (RE = Ce, Nd, Sm, Eu, Gd, Dy) by the SSR method. They reported 

that the electron concentration increased with substitute RE3+. In addition, the electrical 

resistivity and Seebeck coefficient decreased and exhibited metallic behavior. The 

thermal conductivity of RE = Ce and Dy was lower than RE = Nd, Sm, Eu, and Gd at 

room temperature. The ZT value of RE = Ce, Nd, Sm, Eu, Gd, and Dy are 3.91, 4.09, 

4.94, 5.83, 2.64, and 5.38, respectively at room temperature. 
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 Linh (Linh et al., 2010, pp.2-5) calculated the electronic structure of 

R0.25Ca0.75MnO3 (R = rare earth) using density functional theory (DFT) with a Dmol3 

code. They reported that CaMnO3 has a band gap of 1.034 eV (DFT+Dmol3) and G-

AFM, and a small gap with doping rare earth. The Eu0.25Ca0.75MnO3 exhibits the 

strongest structural change, as shown in Figure 12 and 13. 

 
Figure 12 The R0.25Ca0.75MnO3 cluster atoms 

 

 
Figure 13 Energy band structure for the R0.25Ca0.75MnO3 systems  

              (R = La, Nd, Eu, Tb, Ho, Y) 
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 Kafash (Kafash, Moghadam, Kompany & Hosseini, 2010, unpage) 

prepared CaMnO3 by the sol-gel method. They reported that CaMnO3 has an 

orthorhombic structure and exhibits an electrical resistivity of 7  cm at 325 K, 

decreasing to 2.25  cm at 540 K.  

 Zhang (Zhang et al., 2011, pp.542-545) calculated electronic structure of 

CaMnO3 using density functional theory (DFT). They reported that G-type AFM is more 

stable (via total energy minimization calculations). The band gap 0.7 eV was carried 

out by energy the band structure, as shown in Figure 14. The calculated of density 

state (DOS) exhibited Mn-d and O-p orbitals, which also analyzes electron mobility 

and carrier concentration as well as determining the thermoelectric properties. 

 
Figure 14 Energy band structure of CaMnO3 calculated by DFT 

 Zhang (Zhang et al., 2011, pp.4171-4175) calculated the electronic 

structure of Ca0.875 M0.125MnO3 (M = Na, Ga) by DFT. They reported that the 

calculated energy band structure exhibits metallic characteristics (shown in Figure 15). 

The Debye temperature and phonon sound velocity also increased due to Na- and 

Ga-doped, respectively. The calculated phonon thermal conductivity exhibited was 

greater for Na-doped than Ga-doped. The Seebeck coefficient also appeared more 

enhanced with Na-doped as opposed to Ga-doped.  

Eg = 0.7 eV 
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Figure 15 Energy band structure of (a) Ca0.875 Na0.125MnO3 and (b) Ca0.875 Ga0.125MnO3 

 

 Zhang (Zhang et al., 2011, pp.1258-1262) calculated the electronic 

structure of Ca0.875Sr0.125MnO3 by DFT. They reported that the band gap decreased 

from 0.7 eV to 0.2 eV at Sr-doped, as shown in Figure 16(a). the density of state 

near the Fermi energy indicated that the Seebeck coefficient, carrier concentration and 

phonon resistance  were also are enhanced, as show in Figure 21(b).  

 
 

 

Figure 16 (a) Energy band structure and (b) partial density of state of  

                 Ca0.875Sr0.125MnO3 

 Trang (Trang et al., 2011, pp.3613-3621) performed calculation on 

CaMnO3 using DFT with Dmol3 code. They reported that CaMnO3 has structure space 

groups P4/mmm and Pm-3m at the A-AFM phase, Pm-3m at B-, F- and G-FM; 

P4/mmm at C-, D- and E-AFM. In addition, at non-magnetic has structure space 

group Pm-3m. 

(a) (b) 

(b) (a) 
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 Zhang (Zhang et al., 2013, pp.1859-1864) calculated the electronic 

structure of CaMnO3, electrical conductivity, and Seebeck coefficient by way of DFT 

and Boltzmann theory, as shown in Figure 17. They reported that CaMnO3 was stable 

at G-AFM with a band gap of 0.7 eV. The electrical conductivity exhibited good 

conductance along the a- and c-axes. The Seebeck coefficient was larger at the  

b-axis than it was at the a- and c-axes. The ZT value was calculated as 1.15 at 1000 

K. 

 

Figure 17 Calculated of (a) electrical conductivity and (b) Seebeck coefficient  

              for CaMnO3 versus temperature 

 Thongsri (Thongsri et al., 2013, pp.327-330) prepared CNTs–added 

CaMnO3 (CNTs = 2%, 4%, 6%, 8% and 10%) by the SSR method. They reported that 

CNTs can reduce thermal conductivity of CaMnO3 from 2 W m–1  K–1 to 0.5 W m-1  K-1, 

as show in Figure 18.  

 
Figure 18 Thermal conductivity of CNTs-added CaMnO3 versus temperature 

(b) (a) 
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 Feipeng (Feipeng et al., 2013, pp.885-890) prepared Ca1–XPrXMnO3 (X = 

0, 0.06, 0.08, 0.1, 0.12, 0.14) using the citrate-sol-gel method. They reported that 

carrier concentration and carrier mobility were increased, whilst the electrical resistivity 

and Seebeck coefficient were decreased with x content. The electrical resistivity, 

Seebeck coefficient and thermal conductivity all were increased at high temperature 

with these samples. The sample Ca0.92Pr0.08MnO3 exhibited a ZT value of 0.16 at 873 

K. 

 

 Mouyane (Mouyane et al., 2014, pp.71-77) prepared Ca1–XRXMnO3  

(R = Yb, Dy, Sm, Bi; X = 0, 0.1) by the flash combustion method. They reported that 

the valence of Mn was a hybrid of +4 and +3 which caused an increase in the unit 

cell volume, which in turn increased the ion radius of Yb-, Dy-, Sm-, and Bi-doped. 

Electrical resistivity and the Seebeck coefficient were decreased by Yb-, Dy-, Sm-, 

and Bi-doped. Metallic behavior was exhibited because the carrier concentration had 

increased. Moreover a good power factor was shown with a value of 165 W m–1  K–2 

at 673 K for Ca0.9Yb0.1MnO3  

 Seetawan (Seetawan, 2014, pp.9-14) calculated the thermoelectric 

properties of Ca0.8M0.2MnO3 (M=Cu, Ag and Bi) using the DV-X method, MD 

method, and Maxwell-Boltzmann distribution model. He reported that the energy band 

structure exhibited a band gap of 0.68 eV which decreased to 0.18 eV, 0.11 eV and 

0.42 eV for Cu-, Ag- and Bi-substitute. The electrical resistivity and Seebeck 

coefficient decreased due to an increase in the carrier concentration, as shown in 

Figure 19. The thermal conductivity decreased with Cu-, Ag- and Bi-substitutes, 

which indicates that good thermoelectric properties where present, as shown in Figure 

20.  
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Figure 19 (a) Electrical resistivity and (b) Seebeck coefficient of Ca0.8M0.2MnO3  

              M=Cu, Ag and Bi) versus temperature 

 
Figure 20 Thermal conductivity of Ca0.8M0.2MnO3 (M=Cu, Ag and Bi)  

              versus temperature 

 Zhu (Zhu et al., 2014, pp.15531-15536) prepared Ca0.96Dy0.02RE0.02MnO3 

(RE = Ho, Er, Tm) by the SSR method. They reported that the unit cell volume 

increased because Mn4+ gives a carrier of Ho3+ (radius = 1.015 Å) Er3+ (radius = 1.004 

Å) and Tm3+( radius = 0.994 Å). The density of state per carrier concentration 

exhibited 0.184, 0.132, 0.144 and 0.125 for Ca0.96Dy0.02MnO3, 

Ca0.96Dy0.02Ho0.02MnO3, Ca0.96Dy0.02Er0.02MnO3, and Ca0.96Dy0.02Tm0.02MnO3, 

respectively. The Seebeck coefficient exhibited an independent temperature, which 

indicates that the conduction band is near Fermi energy and less than 
Bk T . The 

electrical resistivity decreased with Ho-, Er- and Tm-doped. The ZT value was 
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measured as 0.225 at 1000 K for both Ca0.96Dy0.02 Ho0.02MnO3 and Ca0.96Dy0.02 

Er0.02MnO3. 

 Villa (Villa et al., 2014, pp.22-25) prepared Ca0.95La0.05 Mn1–XNbXO3 (0  x 

 0.10) by the SSR method. They reported that the unit cell volume increased with x 

content. The bond length of Mn4+–O–Mn4+change to Mn4+–O–Mn3+ as Nb5+-doped. The 

electrical resistivity and Seebeck coefficient exhibited metallic behavior. The 

thermoelectric performance of the sample x=0.03 can be enhanced by a power factor 

of 0.4 W cm–1  K–2 at 300 K. 

 Zhu (Zhu et al., 2015, pp.1535-1539) prepared Ca1–2XDyXYbXMnO3 (0  x 

 0.1) by the SSR method. They reported that the valence of Mn4+ changed to Mn3+ 

because Mn4+ was given an electron from Dy and Yb. The electrical resistivity, 

Seebeck coefficient and thermal conductivity decrease with Dy- and Yb-doped. The 

sample also indicated metallic behavior. The ZT value was 0.27 at 1073 K for sample 

x = 0.02, which demonstrated good thermoelectric performance by double-doped.  

 Zhu (Zhu et al., 2015, pp.105-109) prepared Ca0.98Dy0.02Re0.02MnO3 (Re = 

La, Pr, Sm, Er, Ho, Yb) by the SSR method. They reported that the electrical resistivity 

and Seebeck coefficient decreased due to an increase in the carrier concentration and 

carrier mobility. The thermal conductivity was decreased due to a shortage of phonon 

vibration. The ZT value was 0.25 at 973 K for Ca0.96Dy0.02Yb0.02MnO3 which exhibited 

an enhanced thermoelectric performance. 

 Kabir (Kabir et al., 2015, pp.347-351) prepared Ca1–XBiXMnO3 ( X = 0, 

0.02, 0.03, 0.04, 0.06, 0.10) by the SSR method. They reported that the electrical 

resistivity and Seebeck coefficient decreased with an increase in x (according to the 

carrier concentration). Thermal conductivity decreased at x = 0.03 and 0.04. The ZT 

value was 0.25 at 973 K for x = 0.03. A small Bi-doped enhanced the TE 

performance of CaMnO3. 

 Zhang (Zhang et al., 2015, pp.1-5) calculated the electronic structure and 

thermoelectric properties of Ca0.75R0.25MnO3 (R = La, Ce, Pr, Nd, Pm, Sm, Gd, Tb, Dy, 

Ho, Er, Tm, Lu) by using both the DFT and Boltzmann theory. They reported that 
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CaMnO3 was stable at G-AFM, whereas the substitution of Lanthanides produced 

greater stablility at C-AFM. The energy band structure exhibited a Fermi energy shift 

upwards into the conduction bands, which indicates that doped systems become 

metallic, as shown in Figure 21. Confirmation that Mn4+ was given an electron form 

Lanthanides was confirmed by the unit cell volume, difference of charge electron Mn/R 

and binding energy. The Seebeck coefficient and electrical conductivity also showed 

that Lanthanides can be used to enhance thermoelectric performance and metal 

behavior, as shown in Figure 22. 

 
 

 

Figure 21 Energy band structure C-AFM of (a) CaMnO3 and (b) Ca0.75R0.25MnO3  

              (R = La, Ce, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu)  

 
Figure 22 (a) Seebeck coefficient and (b) electrical conductivity of Ca0.75R0.25MnO3  

                  (R = La, Ce, Pr, Nd, Pm, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu) versus T 

 

 

 

(a) (b) 
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 For the period 1995 – 2015, the development of the Dimensionless figure 

of merit for CaMnO3 is illustrated in Figure 23; 
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Figure 23 History of ZT for CaMnO3 thermoelectric material 

 In addition, there has been much research in the use of CNTs to enhance 

the performance of oxide thermoelectric materials composed of TiO2 and Ca3Co4O9. 

 Lai (Lai et al., 2015, p. 8120-4) prepared the CNTs/TiO2 (CNTs = multi- 

walled CNTs, MWCNTs) by the spark plasma sintering (SPS) technique at 1200 K. 

Then they simulated the electronics structure of CNTs/TiO2 by the DFT method, based 

on an ab initio simulation, as shown in Figure 24. They reported that CNTs/TiO2 

showed increased electrical conductivity and Seebeck coefficient, while thermal 

conductivity simultaneously decreased. With regard to the energy band structure, 

carbon can reduce the band gap from 2.89 eV to 1.67 eV, which corresponded to with 

the experimental data, as show in Figure 25. The ZT value illustrated that MWCNTs 

can be used to enhance thermoelectric performance, as shown in Figure 26. 
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Figure 24 The ab initio simulated structure of (a) TiO2 and (b) carbon doped TiO2, 

              the Mulliken charge dispersion of (c) TiO2 and (d) carbon doped TiO2 

  

Figure 25 (a) The energy band structure of TiO2 and carbon doped TiO2  

              and (b) UV-vis spectra of TiO2 and carbon doped TiO2 

 

Figure 26 Dimensionless figure of merit of TiO2 and carbon doped TiO2 

(a) 

(b) 
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 Tang (Tang et al., 2015, pp.961-965) prepared CNTs doped Ca3Co4O9 by 

the sol-gel method. They reported that CNTs can reduce thermal conductivity from  

1 W m-1 K-1 to 0.319 W m-1 K-1 at room temperature. CNTs can also enhance the 

Seebeck coefficient form 50 μ V K-1 to 125 μ V K-1 at room temperature. Electrical 

resistivity was increased by CNTs-doped but CNTs however, did not enhance electrical 

resistivity. CNTs did not improve the ZT of Ca3Co4O9. The thermal conductivity, 

Seebeck coefficient and electrical resistivity is shown in Figures 27 and 28; 

 

Figure 27 (a) Thermal conductivity and (b) Seebeck coefficient for xCNTdCCO samples  

              versus temperature. 

 
Figure 28 Electrical resistivity for xCNTdCCO samples versus temperature. 

 

(a) (b) 
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