
 

CHAPTER 3 

METHODOLOGY 

 The applied molecule method based on DV-X and MXDORTO is 

comprised of the molecular orbital method and the molecular dynamics method. Firstly, 

the cluster atom models were designed for calculating the possible outcomes of CNTs-

added CaMnO3, which consists of added, substitute and doping. Secondly, the 

electronic structure was calculated by the DV-X method. Thirdly, calculation of the 

thermal properties were calculated by the molecular dynamics method. Fourthly, the 

electronic structure and thermal properties were analyzed. The thermoelectric 

properties are composed of the Seebeck coefficient, electrical conductivity, electron 

thermal conductivity and lattice thermal conductivity; calculated by using equations 

(80), (113), (105) and (119), respectively. Finally, the Dimensionless Figure of Merit 

was estimated using the following equation (142); 
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     (142) 

 where S  is the Seebeck coefficient,   is electrical conductivity, and   is 

total thermal conductivity [which composed of electron thermal conductivity ( e ) and 

lattice thermal conductivity ( lat )]. T  is absolute temperature.  
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 The applied molecule methodology is shown in Figure 29. 

 

Figure 29 Methodology of applied molecule method 

Cluster atom models 

 The cluster atom models were designed by displat code on a DOS system, 

which was composed of CMO, CNTs-added CMO and C-substitute CMO case studies. 

The crystallography data of each cluster atoms model is shown in Tables 1 – 3. 

Table 1 Crystallography data of CMO 

data CaMnO3 CaMnO3 

Space group 221 (Pm3m) 62 (Pnma) 

Lattice parameters a=b=c=3.73 Å 
a=5.2812 Å, b=7.4571 Å, 

c=5.2753 Å 

Atomic position 

     Ca (x, y, z) 1/2,  1/2,  1/2 0.0288, 0.250, -0.008 

     Mn (x, y, z) 0,  0,  0 0,  0,  0.5 

     O (x, y, z) 1/2,  0,  0 
0.489, 0.250, 0.067 (for O1) 

0.285, 0.033, 0.711 (for O2) 
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Table 2 Crystallography data of CMO and CNTs-added CMO 

data CNTs-added CaMnO 

Space group 221 (Pm3m) 

Lattice parameters a=b=c=3.73 Å 

Atomic position 

     Ca (x, y, z) 1/2,  1/2,  1/2 

     Mn (x, y, z) 0,  0,  0 

     O (x, y, z) 1/2,  0,  0 

     CNTs ( , )C n m  (3,3)C  

 

Table 3 Crystallography data of C-substitute CMO 

data C-substitute CaMnO3 

Space group 62 (Pnma) 

Lattice parameters 
a=5.2812 Å, b=7.4571 Å, 

c=5.2753 Å 

Atomic position 

     Ca (x, y, z) 0.0288, 0.250, -0.008 

     C (x, y, z) 0.0288, 0.250, -0.008 

     Mn (x, y, z) 0,  0,  0.5 

     O (x, y, z) 
0.489, 0.250, 0.067 (for O1) 

0.285, 0.033, 0.711 (for O2) 

 

DV-X calculation 

 In the DV-X method, calculation was achieved using the Hartree-Fock-

Slater approximation, together with the linear combination of atomic orbital method, 

and self-consistent field (Adachi et al., 1978, pp.875-883; Tanabe et al., 1978, 

pp.49-58; Adachi et al., 1979, pp.1528-1537). The calculations were carried out on 

100,000 sample points per atom in the self-consistent field. The positions of the 

sample points with Gaussian distribution around each atom were selected randomly. 

The calculation was continued until the difference of the orbital population of all the 

atoms between the initial and final state came to less than 0.005. Though each atom 

มห
าวทิ

ยาล
ัยร
าช
ภัฏ
สก
ลน
คร



69 

had some representative point, the results written below were obtained by the inner 

atom for each cluster, in order to avoid the effect of surface. 

 The three-dimension problem can be solved by using Schrödinger’s 

equation, followed by equation (142);  

2
2 ( ) ( ) ( )

2
eff i i iV r r E r

m

 
      
 

     (142) 

 where   is molecular wave function, E  is energy, m  is electron mass,  

= 1.05 × 1034 J s, ( )effV r  is effective potential of the position r  followed by; 
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 where ( )ionV r  is ion Coulomb potential, ( )HV r  is the Hartree potential, 

( )XCV r  is the exchange-correlation potential term as given by the statistical local 

expression,   is the HFS parameter constant and fixed = 0.7 (Adachi et al., 1978, 

pp.875-883) and ( )r  is the molecular electron density at the position r . 

The Seebeck coefficient and electrical conductivity which were derived in 

chapter 2, can be evaluated using the following equations; 

F B
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 where F0E  is Fermi energy at 0 K and r  is the number of total orbitals, 

carried out by DV-X calculation. 
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MD calculation 

 In the MD calculation, the atom positions and velocities from Newton’s 

equation of motion were used by Verlet’s algorithm (Verlet, 1967, pp.98-103.), using 

a run time per step of 21015 s and Ewald summation (Wigner, 1932, pp.749–759), 

to evaluate the total internal energy. The potential function ( )U r  for interatomic 

interaction used Morse-type potential functions (Morse, 1929, pp.57-65) adding the 

Busing-Ida (Ida, 1976, pp.97–104) as show in equation (147). 
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 where,  0
f = 4.186, i

z  and 
j

z  are the effective partial electronic charges 

on the ith and jth ions, 
ij

r  is the inter–atomic distance, 
ij
r  is the bond length of the 

cation–anion pair in vacuum, and a, b and c are the characteristic parameters 

depending on the ion species. The potential functions, 
ij

D  and 
ij

  describe the depth 

and shape of this potential, respectively. The first term describes the Coulomb 

interactions and the second term denotes core repulsions. The third term is a  

Morse-type potential and applied only to cation–anion pairs. 

 The heat capacity was composed of a lattice dilatational term, constant 

volume term and constant pressure term. The heat capacity of the lattice dilatational 

term ( dC ) can be evaluated using lattice parameters, the linear thermal expansion 

coefficient and compressibility. The heat capacity at constant volume ( VC ) can be 

evaluated by the gradient of the total internal energy. Subsequently, the heat capacity 

at constant pressure ( PC ) is a sum of VC  and dC , as descripted following equations; 
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      (150) 

 where ( )E T  is total internal energy, lin  is the linear thermal expansion 

coefficient,   is compressibility, mV  is molar volume, ( )a P  is the lattice parameter at 

pressure (Pa)P , 0
P  is atmospherice pressure (1 MPa), ( )a T  is the lattice 

parameter at temperature (K)T  and 0
T  is room temperature.  

 The lattice thermal conductivity ( lat ) can be evaluated from the time 

integral of the heat flux auto–correlation function (ACF), using the Green–Kubo relation 

(Zwanzig, 1965, pp.67-102), as show in the following equations; 
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 Where ( )S t  is the auto–correlation function, m , v , ijr , ijf , ( )
ij ij

U r  are 
mass, velocity, interatomic distance between atom i  and j , force and Busing-Ida 
potential between atom i  and j , respectively. Lastly av

E  is the average energy 
of the system.  
 The auto-correlation function was obtained from MXDORTO with 1×106 run 

steps. To ensure the accuracy of results, the lattice thermal conductivity was averaged 

over ten simulations with the different results of the auto-correlation function. 

 Finally, the Seebeck coefficient, electrical conductivity and thermal 

conductivity all contributed to the evaluation of the ZT, as shown in equation; 
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