
 

CHAPTER 1 

DISSERTATION INTRODUCTION 

Introduction 

 Motivation 

  Since 1903, the Cu2MnAl discovered by Fritz Heusler, and it shows 

ferromagnetic behavior although these constituent elements are non-ferromagnetic 

thus called “Heusler alloys” (Heusler, Starck & Haupt, 1903, pp.220-223; 1903, 

pp.219-223). Nowadays, the Heusler alloys composed four families and more than 

1000 members, such as half-Heusler (hH, 𝑋𝑌𝑍), full-Heusler (fH, 𝑋$𝑌𝑍), inverse-

Heusler (iH, 𝑌𝑋$𝑍), and quaternary-Heusler (qH, 𝑋𝑋%𝑌𝑍). Where, 𝑋, 𝑋%, and 𝑌 are 

a transition metal and the rare earth element, 𝑍 is elements from group 3A-5A, and 

𝑋% ≠ 𝑋 (Graf, Felser & Parkin, 2011, pp.1-50). The magnetic property of Heusler 

alloys can be predicted by counting the number of valence electrons (𝑁()) (Felser, 

Fecher & Balke, 2007, pp.668-699). For hH alloys, the semiconductor, paramagnetic, 

and ferromagnetic predicted using the 𝑁() equal to eight or eighteen, seventeen, and 

nineteen, respectively. The semiconductor, ferromagnetic, and superconductor required 

the 𝑁*+  equal to twenty-four, less than twenty-four, and twenty-seven, respectively, 

for fH, iH, and qH alloys (Graf et al., 2011, pp.1-50). Besides, Buschow and Engen 

(1981, pp.90-96) reported the fH used entirely in the magneto-optic materials. In 

addition, Heusler alloys widely applied in spintronic device (Nikolaev et al., 2009, 

p.222501), spin torque device (Wu et al., 2009, p.122503), superconductors (Wernick 

et al., 1983, pp.90-92), topological insulators (Graf et al., 2011, pp.1-50), and 
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thermoelectric materials (Asahi, Morikawa, Hazama & Matsubara, 2008, p.064227). 

The thermoelectric (TE) is alternative energy and more important in recent years. TE 

materials can convert a temperature from waste heat into electricity. The performance 

of TE materials can be considered using the dimensionless figure of merit; 𝑍𝑇 =

𝑆$𝜎𝑇/𝜅, where 𝑆 is the Seebeck coefficient, 𝜎 is electrical conductivity, 𝜅 is thermal 

conductivity, and 𝑇 is absolute temperature (Aswal, Basu & Singh, 2016 pp. 50-67). 

The high 𝑍𝑇 of Heusler compounds mostly found in hH with NVE = 18. Aswal et al. 

(2016, pp. 50-67) proposed the high 𝑍𝑇 of TiNiSn-based hH at intermedium–

temperature range. The TiNiSn is an n-type TE material with high 𝑍𝑇 value of ~0.3 – 

0.4 at 600 – 800 K (Cook & Harringa, 1999, pp. 323-327; Kim, Kimura & Mishima, 

2007, pp. 349-356; Muta, Kanemitsu, Kurosaki & Yamanaka, 2009, pp. 50-55). 

The TiNiSn advantage is low cost, earth-abundant materials, high melting point (1970 

K), and high thermal stability (Berry et al., 2017, pp. 1543-1550; Bankina, Fedorova 

& Leytus, 1993; Muta et al., 2009, pp. 50-55). In TE property, TiNiSn shows narrow 

band gap value of ~0.1 – 0.6 eV, large 𝑆 about -350 µV K–1, low electrical resistivity 

(𝜌 = 1/𝜎) ~0.1 – 8 mW cm (Bhattacharya et al., 1999, pp. 336-339; Kim et al., 

2007, pp. 349-356; Bhattacharya et al., 2008, p. 184203; Berry et al., 2017, pp. 

1543-1550) at room temperature. However, the TiNiSn disadvantage is high 𝜅. 

Therefore, the 𝑍𝑇 of TiNiSn less than the conventional TE materials (Bhattacharya et 

al., 1999, pp. 336-339; Kim et al., 2007, pp. 349-356). From the 𝑍𝑇 equation, high 

𝑍𝑇 required a high power factor (𝑆$𝜎) and a low 𝜅. Several research works used the 

alloy scattering, defect phonon scattering and nanostructure method to reduce the 𝜅 

(Bhattacharya et al., 1999, pp. 336-339; Gürth et al., 2016, pp. 210-222; 

Katayama, Kim, Kimura & Mishima, 2003, pp.1160-1165. In electrical part, it can be 

improved the power factor by tuning the carrier concentration, such as band structure 

engineering, tuning a carrier concentration, and increasing crystal complexity 
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(Katayama et al., 2003, pp.1160-1165; Kim et al., 2007, pp. 349-356; Muta et al., 

2009, pp. 50-55; Berry et al., 2017, pp. 1543-1550; Yang, Chen, Meisner & Uher, 

2002; Douglas et al., 2014, pp. 043720). From above mentioned, the theoretical 

thermoelectric property of TiNiSn still lacks in detail. 

  This dissertation presented the theoretical investigation of the 

thermoelectric property of TiNiSn-based hH alloys. The density functional theory-

based with the Boltzmann transport equation (BTE) and quasi-harmonic Debye model 

performed to calculate the electronic structure, thermal property, and TE property. 

Chapter 1 is an introduction, the literature review, and related theory. Chapter 2 

presents a topic “enhancing the thermoelectric performance of self-defect TiNiSn: a 

first-principles calculation”. Chapter 3 presents a topic “reduced lattice thermal 

conductivity of Ti-site substituted transition metals Ti1-XTMXNiSn a quasi-harmonic 

Debye model study”. Chapter 4 presents a topic “enhancing the thermoelectric 

properties of TiNiSn by transition metals co-doped on the Ti-site of 

Ti0.5TMI0.25TMII0.25NiSn: A first-principles study”. Chapter 5 presents a topic “First-

principles investigation on thermoelectric properties of TiNiSn1–xAx (A = As, Sb, Bi; x = 

0 – 0.125) half-Heusler alloys”. The structure of chapters 2 – 5 composed 

introduction, computational details, results and discussion, and summary. The 

conclusion illustrated in Chapter 6. Chapters 2 – 4 carried out at the Simulation 

Research Laboratory (SRL), Center of Excellence on Alternative Energy (CEAE), Sakon 

Nakhon Rajabhat University, Sakon Nakhon, Thailand. Chapter 5 carried out at Diño 

Research Group, Department of Applied Physics, Graduate School of Engineering, 

Osaka University, Osaka, Japan. 
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 Objectives 

  1. To investigate the electronic structure of Sc, Zr, Hf, Nb, V, Mn, As, 

Sb, and Bi dope TiNiSn by using the density functional theory-based. 

  2. To investigate the thermoelectric properties of Sc, Zr, Hf, Nb, V, Mn, 

As, Sb, and Bi dope TiNiSn by using the density functional theory-based. 

 

 Anticipated outcomes of the dissertation 

  1. Obtained the electronic and thermoelectric property of Sc, Zr, Hf, Nb, 

V, Mn, As, Sb, and Bi dope TiNiSn half Heusler alloys. 

  2. Obtained the optimal candidate for enhancing the thermoelectric 

properties of Ti-Ni-Sn half Heusler alloys. 
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Theoretical Background 

 Heusler alloys  

  Heusler alloys are a large group which more than 1000 members and 

its wide range of material property. The element predict table for Heusler alloys 

illustrated in Figure 1 (Graf et al., 2011, pp.1-50). Heusler alloys have a face-centered 

cubic (FCC) crystal structure with two different compositions. One is a ternary 

composition, 1:1:1 for hH. Two is a quaternary composition, such as 2:1:1 for fH, 1:2:1 

for iH, and 1:1:1:1 for qH, respectively. The Heusler alloys crystal structure data 

illustrated in Figure 2 and Table 1. 

 

   
Figure 1 Periodic table for Heusler compounds. Blue, red, and green color are 

representing an element for X, Y, and Z, respectively. 

 

 
Figure 2 The family of Heusler structure composed hH, fH, iH, and qH.  
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Table 1 The Heusler alloys crystal structure data.  

 Space group 
number 

4a 
(0,0,0) 

4b 
(1/2, 1/2, 1/2) 

4c 
(1/4, 1/4, 1/4) 

4d 
(3/4, 3/4, 3/4) 

half Heusler(1) 
full Heusler(1) 
inverse Heusler(1) 

type I 
type II 
type III 

216 
225 
216 

X 
Y 
 
X 
Z 
Y 

Z 
Z 
 
Y 
X 
Z 

Y 
X 
 
Z 
Y 
X 

 
X 

quaternary Heusler(2) 
type I 
type II 
type III 

216  
X 
X 
X 

 
Y 
X’ 
Z 

 
X’ 
Y 
X’ 

 
Z 
Z 
Y 

(1) Graf et al., 2011, pp.1-50 
(2) Yan et al., 2016, pp.64-67 

 
  Slater and Pauling (Slater, 1936, p.537; Pauling, 1938, p.899) 

estimated the magnetic moment (𝑚) from the average 𝑁() per atoms. The magnetic 

moment in multiples of Bohr magnetrons 𝜇6) is given by an equation; 

𝑚 = 𝑁() − 2𝑛↓,      (1) 

  where 2𝑛↓ is the number of electrons in the minority states. In the case 

of hH alloys, the Slater-Pauling rule is given by an equation;  

𝑚;<= = 𝑁() − 18.      (2) 

  For fH, iH, and qH alloys, the Slater-Pauling rule is given by an 

equation; 

𝑚;?<= = 𝑚<;?= = 𝑚;;@<= = 𝑁() − 24.  (3) 

  The 𝑚 per formula unit as a function of the 𝑁() presents in Figure 3. 
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Figure 3 The magnetic moment per formula unit of Co2-based fH alloys agree with the 

Slater-Pauling rule. 

 

 Theorem of thermoelectricity   

  The TE phenomena with an energy conversion from heat to electricity 

can be conveniently discussed regarding the schematic of a thermocouple, as shown in 

Figure 4. It can be considered as a circuit formed from two dissimilar conductors. From 

Figure 4, 𝑎 and 𝑏 are connected electrically in series but thermally in parallel. If the 

junctions A and B are maintained at different temperatures 𝑇F and 𝑇$, 𝑇F > 𝑇$ is an 

open circuit electromotive force (emf). 𝑉 is developed between C and D gave by 𝑉 =

𝑆(𝑇F − 𝑇$) or 𝑆 = 𝑉/∆𝑇. Therefore, the differential Seebeck coefficient 𝑆NO defines 

between the elements a and b. The relationship is linear for small temperature 

differences. The sign of a is positive if the emf causes the current to flow in a clockwise 

direction around the circuit and is measured in V K–1. 

 

มห
าว
ทิย
าล
ัยร
าช
ภัฏ
สก
ลน
คร



8 

 

Figure 4 Schematic primary thermocouple (Rowe, 2006, p. 1-1). 

  For Peltier effect, in Figure 4, the reverse situation is considered with an 

external emf source applied across C and D. A current 𝐼 flows in a clockwise sense 

around the circuit. A rate of heating q occurs at one junction between a and b. A rate 

of cooling −𝑞 occurs at the other. The ratio of 𝐼 to 𝑞 defines the Peltier coefficient (Π) 

given by Π = 𝐼/𝑞, and this is positive if A is heated, B is cooled, and is measured in 

watts per ampere or volts. 

  The Thomson effect relates to the rate of generation of reversible heat 

𝑞, which results from the passage of current along a portion of a single conductor, 

along which there is a temperature difference 𝛥𝑇. Providing the temperature 

difference is small, 𝑞 = 𝛽𝐼𝛥𝑇, where 𝛽 is the Thomson coefficient. The units of 𝛽 are 

the same as those of the Seebeck coefficient V K–1. Although the Thomson effect is not 

of primary importance in thermoelectric devices, it should not be neglected in detailed 

calculations. 

  The efficiency of the TE material included of the TE generator (𝜂) and TE 
cooler efficiency (COP) with: 
 

𝜂 = [\][^
[\

F_=[]F
F_=[_[^/[\

 ,   (4) 

COP = (=[\
?/$)]∆[
=[\[^

 ,     (5) 
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  where, the subscript H and C are hot and cold temperature, and Δ𝑇 is 

difference temperature. 𝑇 is average temperature. The relation between 𝑍𝑇 and 

efficiency, for example, 𝑍𝑇 and 𝜂 presented in Figure 5. 

 

 

Figure 5 The relation of 𝑍𝑇 and 𝜂 versus hot side temperature for skutterudite, hH, 

and low 𝑍𝑇 material (Snyder & Toberer, 2008, pp. 105-114). 

 

  From above mentioned in a motivation section, the equation 𝑍𝑇 =

𝑆$𝜎𝑇/𝜅 means TE property depended on temperature. Besides, TE property also 

depended on the electronic structure like carrier concentration with: 

𝑆 = bc?de
?

fgh?
𝑚∗𝑇 c

fj

$/f
,   (6) 

𝜎 = 𝑛𝑒𝜇,        (7) 

  where, 𝑛 is a carrier concentration, 𝑚∗ is an effective mass, h is the 

Plank’s constant, 𝑒 is an electron charge, 𝑘n  is the Boltzmann’s constant, and 𝜇 is 

carrier mobility. The 𝜅 includes the electron part and lattice or phonon part given by: 

𝜅 = 𝜅g + 𝜅p = 𝑛𝑒𝜇𝐿𝑇 + F
f
𝐶*𝑣[𝑙,   (8) 

  where 𝜅g  is electron thermal conductivity, 𝜅p  is a lattice thermal 

conductivity, 𝐶*  is heat capacity at constant volume, 𝑣[  is a sound velocity depend on 
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temperature, 𝐿 is the Lorenz number, and 𝑙 is a phonon mean free path. The optimal 

TE property can be improved by tuning carrier concentration as shown in Figure 6. 

Figure 7 shows the 𝑍𝑇 versus temperature for n-type and p-type TE materials. So, 

the TE materials can be applied in low-, intermedium-, and high-temperature range 

depend on the specific materials.   

 

Figure 6 Thermoelectric properties versus carrier concentration. 

 

 

Figure 7 The 𝑍𝑇 versus temperature for (a) p-type and (b) n-type thermoelectric 

materials. 
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 Density functional theory 

  Modern computational modeling of materials from first-principles trusted 

on a theoretical and computational technique. These techniques based on the density 

functional theory (DFT). DFT is a method for examining molecules, nanostructures, 

solids, surfaces, and interfaces through the directly unraveling approximate of the 

Schrödinger equation. Figure 8 shows the records to Hohenberg and Kohn's article 

(Hohenberg & Kohn, 1964, pp. 864-867; p. B864). These records have been 

increasing steadily at a rapid step since the 1960s. 

 

 

Figure 8 A statistic of citation per year to the DFT works (Giustino, 2014).  

 

  The DFT starts from the many-body Schrödinger equation to Hartree-

Fock equation (Fock, 1930, pp. 126-148; Hartree, 1928, pp. 89-110), Kohn-Sham 

equation (Khon & Sham, 1965, p. A1133) as well as self-consistent calculation 

(Hohenberg & Kohn, 1964, pp. 864-867; p. B864). The time-independent 

Schrödinger equation yields the following symbolic form: 

kinetic	energy + potential	energy 𝜓 = 𝐸���𝜓,  (9) 
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where 𝐸��� is the total energy for the wavefunction 𝜓 . The probability of finding the 

particle at the point 𝐫 is 𝜓 𝐫 $. For one electron, the potential energy 𝑉 𝐫 , 

equation (9) can be written as: 

𝐩?

$��
+ 𝑉 𝐫 𝜓 𝐫 = 𝐸���𝜓 𝐫 ,   (10) 

where 𝑚g is an electron mass, and 𝑉 𝐫  is a potential energy function. The quantum-

mechanical momentum operator is given by: 

𝐩 = −𝑖ℏ∇, ∇= 𝐮�
�
��
+ 𝐮�

�
��
+ 𝐮�

�
��

,  (11) 

where ℏ is the Dirac constant. The 𝜓� is the lowest-energy solution of an equation 

(10). At equilibrium the system in lowest-energy configuration, for example the 

electron occupies the state 𝜓� accurately. The electron charge distribution at 

equilibrium is therefore given by 𝜓� 𝐫 $. The integral of the electronic charge 

density during the material yields the number of electrons, 𝑁: 

𝑁 = 𝜌 𝐫 𝑑𝐫,     (12) 

where 𝜌 𝐫  is the electron density which simple evaluate by 𝑛 𝐫 = 𝜓 𝐫 $𝑑𝐫	. 

  The 𝐸��� of the system in the quantum state was specified by the 

many-body wavefunction Ψ, where Ψ = Ψ(𝐫�, 𝐑�) and 𝑖 = 1, 2, … , 𝑁. The kinetic 

and potential energy for 𝑁 electrons and 𝑀 nuclei can be written as: 

kinetic	energy = − ℏ?

$��
∇�$	�

��F − ℏ?

$��
∇�$	�

��F ,  (13) 

where 𝑀� = 𝑀F,𝑀$, …. is a mass of nuclei, and ∇$ is the Laplace operator. The 

potential term can be express as: 

potential	energy    =
F
$

g?

¡c¢£

F
|𝐫¥]𝐫¦|

		�
�§¨ ,   (14) 

potential	energy ©© =
F
$

g?

¡c¢£

=�=ª
|𝐑�]𝐑ª|

		�
�§« ,   (15) 

potential	energy  © =
g?

¡c¢£

=�
|𝐫¥]𝐑�|

		�
�,� .   (16) 

  The many-body Schrödinger equation is written as: 
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− ℏ?

$��
∇�$	�

��F − ℏ?

$��
∇�$	�

��F + F
$

g?

¡c¢£

F
𝐫¥]𝐫¦

																																			�
�§¨

																	+ F
$

g?

¡c¢£

=�=ª
|𝐑�]𝐑ª|

+ F
$

g?

¡c¢£

=�
|𝐫¥]𝐑�|

�
�,�

�
�§« Ψ 𝐫 = 𝐸���Ψ 𝐫 .

    (17) 

  In Hartree atomic units, the many-body Schrödinger equation obtained 

from: 

− ∇¥
?

$�
− ∇�

?

$��
� + =�

𝐫¥]𝐑��,� + F
$

F
𝐫¥]𝐫¦

																																														�§¨

																																											+ F
$

=�=ª
|𝐑�]𝐑ª|�§« Ψ 𝐫 = 𝐸���Ψ 𝐫 .

(18) 

  The nuclear coordinates disappear completely as: 

− ∇¥
?

$�
+ 𝑉© 𝐫� + F

$
F

𝐫¥]𝐫¦�§¨ Ψ = 𝐸Ψ.   (19) 

  The simple Kohn-Sham equation for single particle can be written as: 

 −∇?

$
+ 𝑉© 𝐫 + 𝑉¬ 𝐫 + 𝑉� 𝐫 + 𝑉­ 𝐫 𝜙� 𝐫 = 𝜀�𝜙� 𝐫 ,   (20) 

where 𝑉¬ is Hartree-Fock potential, 𝑉� is exchange-potential, and 𝑉­ is correlation 

potential. The many-electron Hamiltonian can be written as: 

𝐇(𝐫F, 𝐫$, … , 𝐫�) = − ∇¥
?

$�
+ 𝑉© 𝐫� + F

$
F

𝐫¥]𝐫¦�§¨ .  (21) 

  The energy, 𝐸, of this state is obtain by: 

𝐸 = Ψ∗ 𝐇 Ψ = d𝐫F, d𝐫$, … , d𝐫� Ψ∗(𝐫F, 𝐫$, … , 𝐫�)𝐇Ψ(𝐫F, 𝐫$, … , 𝐫�).  (22) 

  The DFT concept is an observation that if 𝐸 is the lowest possible 

energy of the system. For example, the energy of the ground state, then 𝐸 is a 

functional of the electron density,	𝐹[𝜌]: 

𝐸 = 𝐹[𝜌].        (23) 

  The total energy of a many-electron system is a functional of the 𝑛 𝐫  

drives under the Hoenberg–Kohn theorem (Hohenberg & Kohn, 1964, pp. 864-867; p. 

B864). The proof is based on the following three premises: 

  i) In the ground state, the 𝑛 𝐫  determines the external potential of the 

nuclei, 𝑉j, in equation (21): 𝜌 → 𝑉j. 
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  ii) In any quantum state, the 𝑉j, determines the many-electron 

wavefunction: 𝑉j → Ψ. 

  iii) In any quantum state, 𝐸 is a functional of the many-body 

wavefunction through equation (1.22): Ψ → 𝐸. 

  It indicates that the 𝐸 must be a functional of the density: 𝐸 = 𝐹[𝜌]. 

However, the exact form of this functional is still unknown. Since the original work by 

Hohenberg and Kohn, a number of very useful approximations have been developed. 

Equation (24) can certainly rewrite this functional as follows: 

𝐹 𝜌 = d𝐫𝜌 𝐫 𝑉j 𝐫 + Ψ[𝜌] 𝐓 +𝐖 Ψ[𝜌] .  (24) 

𝐹 𝜌 = d𝐫𝜌 𝐫 𝑉j 𝐫 − 𝑑𝐫𝜙�∗ 𝐫
∇?

$
𝜙� 𝐫�

	+ F
$

d𝐫𝑑𝐫% ¸ 𝐫 ¸(𝐫@)	
𝐫]𝐫@

+ 𝐸�­ 𝜌
 .  (25) 

  From equation (25), first term is an external potential, second term is a 

kinetic energy, third term is the Hartree energy, and final term is an exchange–

correlation energy. It turns out that the ground-state density, 𝑛�, is precisely the 

function that minimizes 𝐸 = 𝐹 𝜌 . This property is called the “Hohenberg–Kohn 

variational principle” and can be expressed as follows (Hohenberg & Kohn, 1964, pp. 

864-867; p. B864): 

¹º ¸
¹j j£

= 0	.       (26) 

  The exchange and correlation potential as equation (1.21) can be 

combined and rewritten as 𝑉�­ 𝐫 , and then it is given by; 

𝑉�­ 𝐫 = ¹+¼½ ¸
¹¸ j(𝐫)

.     (27) 

  The 𝐸�­ 𝑛  is only one approximated parameter in the DFT calculation. 

The local density approximation (LDA) was formulated by Khon and Sham (Khon & 

Sham, 1965, p. A1133) which is demonstrated as: 

𝐸�­¾¿À 𝑛 =∭df𝐫𝜀�­[𝜌].     (28) 
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  The 𝜀�­[𝑛] is exchange-correlation energy per electron based on the 

assumption that the 𝐸�­¾¿À 𝑛  is purely local. It can be written into a simple form of the 

free electron gas model as: 

𝜀�­ 𝜌 ≅ − fg?

$c
[3𝜋$𝜌(𝐫)]F/f𝜌(𝐫).     (29) 

  Nowadays, Chachiyo (2016, p. 021101) have developed the 𝜀­  as 

equation:  

𝜀­ = 𝑎ln 1 + Å
ÆÇ
+ Å

ÆÇ?
.     (30) 

  The parameter 𝑎 and 𝑏 are not from empirical fitting to the Monte Carlo 

data, but from the theoretical constant that the functional approaches high-density 

limit. The Chachiyo’s formula is more accurate than the standard VWN fit function 

(Fitzgerald, 2016, p.20) as shown in Figure 9.  

 

 

Figure 9 The Chachiyo’s formula compared with the Monte Carlo results and VWN 

functional, and high-density limit Chachiyo (2016, p. 021101). 
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  In addition, the LDA was improved by taken the density gradient, ∇𝜌 𝐫  

and called the generalized gradient approximation or GGA. In GGA, the 𝜀�­[𝜌] can be 

written as: 

𝐸�­ÈÈÀ 𝜌 =∭df𝐫𝜀�­[𝜌]𝑓[𝜌 𝐫 , ∇𝜌 𝐫 ],   (31) 

where 𝑓 is function contains an analytic function fitted to particular system.  

  In order to actually solve the Kohn–Sham equations as well as calculate 

the total energy, it is convenient to rewrite here the Kohn–Sham equations and each 

term appearing in them: 

−F
$
∇$ + 𝑉��� 𝐫 𝜙� 𝐫 = 𝜀�𝜙� 𝐫 ,   (32) 

𝑉��� 𝐫 = 𝑉© 𝐫 + 𝑉¬ 𝐫 + 𝑉�­ 𝐫 ,   (33) 

𝑉© 𝐫 = − =�
𝐫¥]𝐑�� ,     (34) 

∇$𝑉¬ 𝐫 = −4𝜋𝜌(𝐫),    (35) 

𝑉�­ 𝐫 = ¹+¼½ ¸
¹j

(𝐫),    (36) 

𝜌 𝐫 = 𝜙� 𝐫 $
� .     (37) 

  The practical procedure for solving the Kohn–Sham equations, it starts 

by specifying the nuclear coordinates. To solve equation (33) using 𝑉© as a first 

approximation to 𝑉���; however, this is too crude an approximation, and it is more 

convenient to guess a possible 𝜌 𝐫 , in order to determine a preliminary 

approximation to the Hartree and exchange and correlation potentials. A simple but 

very useful approximation is to construct the first guess for the 𝑛 𝐫  by adding up the 

densities corresponding to completely isolated atoms but arranged in the atomic 

positions corresponding to the material under consideration. Using the density we 

obtain initial estimates of the 𝑉¬ + 𝑉�­, and from there the 𝑉���, needed in equation 

(33). At this point, it can proceed with the numerical solution of the Kohn–Sham 

equations. It can be done for example by discretizing the space into a mesh of points 
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and representing the Laplace operator using finite difference formulas. By solving the 

Kohn–Sham equations, it can obtain the new 𝜙�, which can be used to construct a 

better estimate of the 𝜌 and the 𝑉���. This process is then repeated until the new 

density matches the old density within a desired tolerance, at which point we say that 

we have achieved self-consistency. The self-consistent procedure illustrated in Figure 

10. 

 

Figure 10 Schematic flow-chart for finding the self-consistent solutions of the Khon-

Sham equations. 
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 Boltzmann transport equation 

  Boltzmann transport theory (Madsen & Singh, 2006, pp.67-71) is a tool 

for achievement understanding into the transport property of real materials. In the 

occurrence of an electric- and magnetic-field and a thermal gradient the electric 

current (𝐽), can be written concerning the conductivity tensors: 

𝐽� = 𝜎�¨𝐸 + 𝜎�¨d𝐸 𝐵d + 𝑣�¨∇Ì𝑇 + ⋯	 .  (38) 

  In term of the group velocity can be written as: 

 𝑣Î 𝑖, 𝐤 = F
ℏ
�Ð¥,𝐤
�dÑ

	,      (39) 

and the inverse mass tensor is 

𝑀ÒÓ
]F 𝑖, 𝐤 = F

ℏ?
�?Ð¥,𝐤
�dÑ�dÔ

	 ,    (40) 

the conductivity tensors can be obtained as: 

𝜎ÎÒ 𝑖, 𝐤 = 𝑒$𝜏�,𝐤𝑣Î(𝑖, 𝐤)𝑣Ò(𝑖, 𝐤),   (41) 

where 𝜎ÎÒÖ is elegantly written using the Levi-Civita symbol, 𝜖�¨d  (Hurd, 2012; 

Oberkampf, Trucano & Hirsch, 2004, pp. 345-384): 

𝜎ÎÒÖ 𝑖, 𝐤 = 𝑒f𝜏�,𝐤$ 𝜖ÖÓØ𝑣Î(𝑖, 𝐤)𝑣Ø(𝑖, 𝐤)𝑀ÒÓ
]F.   (42) 

  The notation used in equations (42) – (43) the symmetry of the 

conductivity tensors directly. In an orthorhombic symmetry, 𝜎ÎÒ is diagonal with all 

three components independent, and 𝜎ÎÒÖ has three independent components and 

vanishes unless 𝛼, 𝛽, and 𝛾 are all different. The relaxation time, 𝜏, in principle is 

dependent on both the band index and the 𝐤 vector direction. However detailed 

studies of the direction dependence of 𝜏 have shown that, to a good approximation, 𝜏 

is direction independent (Schulz Allen & Trivedi, 1992) and that even in the 

superconducting cuprates, that have substantially anisotropic conduction and cell-axes, 

the 𝜏 is almost isotropic (Allen, Pickett & Krakauer, 1988, p. 7482). In the present we 

will use the simplest approximation for the relaxation time, namely to keep it constant, 

มห
าว
ทิย
าล
ัยร
าช
ภัฏ
สก
ลน
คร



19 

which is the most often used in praxis. Similar to the density of states energy 

projected conductivity tensors can be defined using the conductivity tensors, equations. 

(41) – (42) 

𝜎ÎÒ 𝜀 = F
�Û

𝜎ÎÒ 𝑖, 𝐤�,𝐤
¹ Ð]Ð¥,𝐤

ÜÐ
,   (43) 

where 𝑁d is the number of 𝐤-points sampled. Similarly, 𝜎ÎÒÖ 𝜀  can be defined. The 

transport tensors, equation (38), can then be calculated from the conductivity 

distributions  

𝜎ÎÒ 𝑇; 𝜇Þh ß. =
F
à

𝜎ÎÒ 𝜀 −
�áâãäåæ. ç;è

�Ð
d𝜀,   (44) 

𝑣ÎÒ 𝑇; 𝜇Þh ß. =
F

g[à
𝜎ÎÒ 𝜀 (𝜀 − 𝜇Þh ß.) −

�áâãäåæ. ç;è

�Ð
d𝜀, (45) 

𝜅ÎÒ� 𝑇; 𝜇Þh ß. =
F

g?[à
𝜎ÎÒ 𝜀 𝜀 − 𝜇Þh ß. $ −

�áâãäåæ. ç;è

�Ð
d𝜀, (46) 

𝜎ÎÒÖ 𝑇; 𝜇Þh ß. =
F
à

𝜎ÎÒÖ 𝜀 −
�áâãäåæ. ç;è

�Ð
d𝜀,   (47) 

where 𝜅� is the electronic part of the thermal conductivity. The Seebeck and Hall 

coefficients can then easily be calculated 

𝑆�¨ = 𝐸� ∇¨𝑇
]F = 𝜎]F Î�𝑣Î¨,   (48) 

𝑅�¨d =
+¦
êëì

«¥
íîîïnÛ

íîîï = 𝜎]F Î¨𝜎ÎÒd 𝜎]F �Ò.   (49) 

   Under the assumption that the relaxation time 𝜏 is direction 

independent, both the Seebeck and the Hall coefficients are independent of 𝜏. 
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